Dialogue with a16z Co-founder: AI, Entrepreneurship, Fairness, and 'American Opportunity'

比推Published on 2026-02-05Last updated on 2026-02-05

Abstract

In a podcast interview, a16z co-founder Ben Horowitz discusses the transformative impact of AI, the state of entrepreneurship, and societal challenges. He believes AI is rapidly reshaping the economy and startup landscape, with significant industry changes expected within 12-24 months due to existing internet infrastructure enabling fast deployment. The biggest risk to progress is not technology but policy, particularly overregulation that could hinder innovation. Horowitz argues that while AI may increase inequality through a "Kobe Bryant effect"—amplifying returns for top performers—it also democratizes access to tools like education, legal advice, and mentorship via smartphones. He emphasizes that absolute fairness is less critical than ensuring opportunities for upward mobility, citing historical examples where automation created new jobs despite displacing old ones. On entrepreneurship, he explains how a16z differentiated itself by focusing on serving founders' needs—providing knowledge, networks, and confidence—rather than traditional VC prestige. He also shares insights from management icon Andy Grove, stressing the psychological challenges of leadership, such as making tough decisions like reorganizations. Horowitz highlights AI's potential in fields like software development (boosting productivity) and creative industries (enabling new art forms), and discusses a16z's collaboration with the Las Vegas Police Department to deploy AI-driven public safety solutions, r...

Podcast Source: Invest Like The Best

Interviewee: Ben Horowitz(Co-founder of a16z)

Broadcast Date: February 3, 2026

Compiled by: BitpushNews


Preface

Ben Horowitz believes that AI is rapidly reshaping the economy and the entrepreneurial landscape, and will significantly change various industries in the next year or two, creating new opportunities and companies. However, the biggest risk of this revolution is not technology, but policy—excessive regulation could directly slow down or even halt technological leadership.
Regarding unemployment and unfairness, he judges that AI will change the employment structure and amplify returns for the top performers, but it will also lower the barrier to entry and expand the sources of opportunity. Historically, every wave of automation has been accompanied by the disappearance of jobs and the birth of new professions. The key is not absolute fairness, but whether society still provides opportunities for upward mobility. In the AI era, both risks and opportunities are being amplified simultaneously.

The following is the original interview:

The United States in 2026: What is the "State of Play" in Your Eyes?

Interviewer: Ben, an interesting start—how do you view the current state of the U.S.? What does 2026 feel like to you? What's the "state of play"?

Ben: I think the tech industry is very healthy. The U.S. is highly competitive, and the entrepreneurial culture is excellent. From my perspective, that's the most critical part.

I travel around the world frequently, and almost everywhere I go, people ask: How can we have a "Silicon Valley"? The UK, France—they all ask the same question. They have many elements: talent, universities, research. But their problem is: the regulatory environment is worse, especially in the EU, which is becoming increasingly unfriendly to startups; more deeply, it's a cultural issue—in many places, young people don't feel that "doing something bigger than themselves" or "making the world a better place" is a value that society truly prioritizes, so it's hard to get people to dedicate their lives to a mission.

But in the U.S., this is astonishing: people are willing to fight for a mission.

As for the economy, I think it's better than most people imagine. We've implemented many stimulus measures: lower energy prices, less regulation, friendlier tax systems—these are starting to take effect gradually.

More importantly, there's AI. It will affect everything. There's hardly a problem for which you can't say: we have an opportunity to solve it with AI. Car crash deaths, cancer... many major problems could potentially have AI solutions. For the first time, we have a technology that can touch almost every difficult problem. This is new.

Why Will the Impact Be More "Felt" in the Next 12 to 24 Months?

Interviewer: You mentioned that more noticeable changes will occur in the next 12 to 24 months. Why that timeframe?

Ben: Because it's happening now, but it needs deployment and diffusion. Historically, technology deployment was slow often because of infrastructure: cars needed roads, traffic lights; the internet needed fiber optics, smartphones.

But AI is different. Internet infrastructure already exists. If a company wants to use AI, it can do so directly; it doesn't need to first build a "world that can use it." So the diffusion speed will be much faster.

Interviewer: What factors are most likely to interrupt the U.S.'s trajectory of solving problems with technology? What is the biggest risk?

Ben: Policy.

My father once told me: A bad government can destroy everything. No matter how many smart people you have, how good the culture is, or how strong the country is, it can be ruined by bad policy. Look at Venezuela—it was once extremely wealthy, then it turned to communism, and the result was collapse.

Europe also has many smart people, but the output is minimal. In some Eastern European countries during the communist era, much innovation and creativity almost "disappeared." Hungary, Romania produced a large number of genius scientists and entrepreneurs, but once the political system changed, the innovation ecosystem was cut off.

This could happen in the U.S. too. We might even "ban AI." The previous (Biden) administration's executive order once stipulated that selling GPUs required federal approval—that was an official executive order, later overturned. But we were that close to "withdrawing from the global chip competition." It's very fragile.

Another point: Technological solutions are usually more effective than policy solutions. Policy often has huge side effects. For example, during the pandemic, you could use policy to keep everyone at home, but there were many side effects, and the effectiveness wasn't guaranteed; in contrast, if you could develop drugs or vaccines, that was a better path.

The climate issue is similar: No matter how much Europe reduces emissions, if China doesn't, the effect is limited; but if you can develop safe and efficient nuclear energy or fusion, that's a solution that truly "changes the system."

Similarly, policies like "defunding the police" didn't make people safer; technology might actually improve public safety. In short, if you want to make the world better, almost any problem today can potentially be solved by entrepreneurs using technology—for entrepreneurs, there has never been a better era.

AI Enables Restaurant Owners to "Build Their Own Systems": Will This Overturn Your Investment Logic?

Interviewer: I had a long conversation with a restaurant owner in New York yesterday. He said he's going to use AI to transform the entire restaurant operation, even to "build an operating system" himself, without needing many traditional software companies. Will SaaS companies like Toast be replaced? How will this change the way you look at investment opportunities?

Ben: On the positive side: Everything is open for competition again. Many people overreact to traditional software companies, thinking they will all die, but companies like Salesforce, SAP aren't easily disrupted; replacing them requires heavy engineering and organizational capabilities.

However, it's true that: many things have become "something you can do yourself." This will significantly increase the "number of interesting companies."

Another phenomenon is: AI products are "much easier to use" than many historical technology products, so revenue growth is faster. For example, Cursor is essentially an IDE, but it reached a scale of revenue that might have taken over a decade in the past. The growth speed is shocking.

But from an investment perspective, what's really changing is: The "physical laws" of company building have changed. There used to be an iron rule for software companies: you can't catch up to a good product made by a small team by throwing money at it—Google couldn't hire two thousand engineers and catch up to a product someone else built in three years; that wasn't realistic.

Now it's different: if you have data, GPUs, money, you can brute-force many things to a result. Look at some players catching up in the large model competition in a very short time—that was almost impossible in the past. At the same time, the market size might far exceed historical imagination: not $50 billion, but maybe $5 trillion. Valuation, long-term value, competitive catch-up ability—these are all becoming unprecedented.

AI Research Talent Will Be "Priceless"

Interviewer: When you discuss AI investment internally, what's the biggest difference compared to four years ago?

Ben: The thing about AI researchers is very different. If you haven't actually participated in training large models with "hundreds of millions of dollars worth of resources" at places like Google, Meta, OpenAI, Anthropic, then even if you have the money, you might not know how to do it.

Because this isn't something you can learn in school. It's a bit like alchemy—more art than pure theory. The probability of success on the first try isn't high.

This also explains the phenomenon that seems absurd to outsiders: why are people willing to spend hundreds of millions, even billions of dollars to "poach" top AI researchers? Because if there are maybe only forty people in the world who truly know how to do this, and they might determine the fate of a $4 trillion company—the math changes.

AI and Inequality

Interviewer: In venture capital, people often talk about "power law," which背后 is actually inequality. AI amplifies this trend: billion-dollar researchers, super companies, wealth concentration. How do you view the good and bad of inequality?

Ben: The inequality caused by AI, I think, is an extension of the "Kobe effect."

Initially, how much an athlete could earn was limited by the size of the live audience; with television and global broadcasting, the market expanded, and a player could become a billionaire—that was impossible before. The internet allowed products to achieve global distribution quickly, further accelerating wealth concentration; AI adds another layer on top of this: the same product becomes more valuable, so the creator gets richer.

This is indeed the "bad side."

But the "good side" is: AI is extremely democratizing from day one. As long as you have a phone—and now most people have smartphones—you have a very powerful intelligent assistant. Every child can have a top-tier tutor. This might be one of the biggest opportunity equalizers we've ever seen: education, consulting, law, accounting, advice—all in your pocket.

My father also taught me: Life isn't fair. When the government tries to "correct everything to be completely fair," it often doesn't become fairer; instead, power gets concentrated in the hands of "those who execute the system," which historically has often led to disaster. What's truly important is: giving people opportunities—not necessarily exactly the same opportunities, but at least "having a chance."

A system that provides opportunities will inevitably produce inequality, but you can systematically allow more people to have opportunities. I think AI is very strong in this aspect.

"You Must Have Capital, Otherwise You'll Be Permanently Stuck at the Bottom"?

Interviewer: There's a saying online: you have a few years left to accumulate capital, otherwise you'll become part of the "permanent underclass." Because AI will make society need less labor, and those without capital will find it harder to break through. What do you think?

Ben: I don't think the door will close behind you. New technologies often multiply opportunities.

Look at cryptocurrency: many who made money didn't start with much, some even had almost no capital, they just entered the technology curve earlier. If something grows exponentially, even a little capital can multiply many times—you just need "one coin" to get in early.

As for "AI will massively destroy jobs," I think the predictability is overestimated. Humans have been automating since the agricultural age; back then, 95% of jobs were in agriculture, and almost all disappeared, but today there are a huge number of professions that people back then couldn't even imagine.

So sitting here today, it's hard to imagine what new jobs AI will create. Demand for creative work might rise, processing work might fall, but it might not be that simple. More crucially: if AI started around 2012 (image, NLP), and exploded with ChatGPT in 2022—where is the "great job destruction"? Why hasn't it happened? How can you be sure it will definitely happen next and won't create new jobs? I don't think it's that predictable.

The Next 10 to 20 Years: What Is Your Ambition?

Interviewer: In the next 10 to 20 years, what is your ambition?

Ben: I was deeply influenced by Andy Grove. He had a simple but profound view: When you are an industry leader, the growth of the industry depends on you. The market needs you to expand; no one will do it for you.

I see that the reason the U.S. is the U.S. is partly due to the fact: we won the Industrial Revolution. Entrepreneurs like Henry Ford, Edison created technology, technology brought military领先, economic领先, cultural influence—it wasn't accidental.

Now we are at a similar turning point: AI's transformation of government, society, business is equivalent to a new industrial revolution. We will either become the leader and provider of this technology, or we won't. If not, we will lose our status as an economic powerhouse, military powerhouse, and center of cultural influence. I think that would be terrible.

So one of our missions is, at the levels of funding, policy, helping entrepreneurs build companies, etc., to do our best to ensure the next generation of great companies come from the U.S. or the ally system.

What Did Andy Grove Teach You?

Interviewer: Specifically, what was Andy Grove's biggest influence on you? What did you learn?

Note: Andy Grove was the key figure who took Intel from a chip company to a global tech giant, known as "one of Silicon Valley's greatest professional managers," a founder of modern tech company management methods. Many entrepreneurs (e.g., Zuckerberg, etc.) regard him as a management mentor.

Ben: His influence on me is so great it's hard to break it down. "High Output Management" is my favorite management book; I even wrote the preface for the new edition.

Management theory itself isn't hard; an eighth grader can understand it; the difficulty is the psychological aspect—especially young people can't do it: it's confrontational, requires seeing through the surface to the organization, requires being very firm at certain moments, requires putting the overall interest of the organization above the individual.

He has a story: he went to manage Intel's Santa Clara factory, which had the worst indicators. He went to the site, put a roll of toilet paper under a chair. When management started making excuses, he took out the toilet paper and said: "Clean up your mess, then tell me when you can meet the target." Two months later the factory met the target, and afterwards it was always the best, so he got "Manager of the Year."

The Most Common Mistake Founders Make

Interviewer: When did you start personally experiencing this kind of "psychologically difficult" management lesson? How do you get young people to truly appreciate it?

Ben: The common path for founders is: invent something, then need to build a company, but don't know how, so make mistakes, mistakes damage the company, and make you lose confidence, then you start hesitating—and hesitation leads to failure.

Many founders become overly reliant on team input, but the team doesn't have the overall concept; only the leader does. If you delegate decision-making, it creates a power vacuum, and the organization starts to become political—someone will jump into the空白 to seize power.

One of the hardest situations is reorganization (reorg). Reorganization is essentially redistributing power to improve efficiency, but someone will inevitably lose power, and it might be a trusted, excellent veteran who will be very angry. If you compromise to avoid conflict, let him keep his power, you transfer power from the people doing the work to management—the organization will break.

Young people are unwilling to confront because they lack experience, aren't sure the reorg will really save the company, so they choose the "known way to avoid pain" rather than the "theoretically optimal organization," and end up destroying the company.

The Start of a16z: How Did You Manage to Sprint from Zero into the Top Tier?

Interviewer: What was the state when you first started a16z? In the first three days, three months, three years, how did you think about this business?

Ben: The background of the venture capital industry at the time was: there hadn't been a new "top-tier" venture capital firm for a long time. The threshold for being top-tier came from prestige: you had to have invested in Apple, Cisco, Google, Yahoo, etc. A new firm starting from zero couldn't immediately have that track record.

And venture capital is extremely stratified. During booms, everyone makes money, but truly top entrepreneurs only choose top-tier firms: it affects hiring, follow-on funding, market trust. So if you're not top-tier, it's hard to survive long-term.

We knew we had to become top-tier, but our track record wasn't enough, so we changed our approach: VC is a good product for LPs, but it's not a good product for entrepreneurs. If we could make the "product for entrepreneurs" better, we could win.

We came from an entrepreneurial background and knew what founders lacked: confidence, knowledge, network, judgment frameworks. We wanted to build a firm that could systematically empower founders, make them more like real CEOs, not forced to rely on others.

Second point: at the time, VCs almost never marketed, because they lived off mysterious prestige; the more they talked, the more likely they were to be exposed. But we came out publicly expressing views, speaking out, so the media reported on us a lot, and everyone quickly knew we offered a different "product."

Why the Name "Andreessen Horowitz"?

Interviewer: Why did you decide to be so high-profile from the start? And why name the firm after yourselves?

Ben: Mark asked me: why don't VCs market? He traced it back to earlier financial history: JP Morgan, Rothschild, etc., even funded both sides during WWII, so they极度 avoided exposure; this "low-key tradition" continued. Later, the VC prestige system was established, and there was no incentive to market.

After we marketed, we received a lot of criticism: some said we were narcissistic, named it after ourselves, too high-profile. But the practical reason was very real: we were fundraising in 2009, on the edge of the financial crisis. The LPs' biggest worry was: you are excellent entrepreneurs, will you run off to start another company in two years? The LPs would be "left in the fund."

I thought of a way: name the fund after us, so LPs know "this is tied to our reputation," we won't easily leave. This method actually worked.

Interviewer: From taking off in 2009 to reaching cruising altitude, roughly when did you "stabilize"? What was the hardest part?

Ben: Initially, we didn't really understand investing. We had done angel investing, but had no institutional VC experience. We made quite a few mistakes: missed ones we should have invested in, and invested in some we shouldn't have. Missing good deals might hurt more.

Another mistake was our偏差 in GP profile judgment. We overemphasized "must have been a CEO to be an investor," thinking only then would they know how to help founders become CEOs. This shaped the culture and had benefits, but the reality is: many CEOs don't really want to be investors; and many CEOs aren't good at teaching others how to be CEOs.

Fund I was very successful: small size, strong projects (Skype, Slack, Okta, Stripe, etc.), basically impossible not to explode. Fund II wasn't as good as I. By Fund III we realized the GP profile was problematic; that period was scary, later it became a good fund because of Coinbase, Databricks, Lyft, GitHub, etc. After Fund III, we were more certain about "what this firm needs to be."

A later bigger challenge was scaling. We always believed "software is eating the world," and VC should be able to scale. But the structure of traditional VC, the way partner power is分配, is hard to expand. We gradually formed a multi-team structure: each team 4-5 people, plus platform capabilities, covering different technology markets. It became more formed around 2018 (crypto fund) onwards, later扩展到 the whole company.

Why Don't You Do "AI Private Equity Roll-Up Optimization"?

Interviewer: Some say large VCs might eventually become institutions like Blackstone, Apollo? Especially now with the big wave of "AI private equity buyout + optimization."

Ben: AI private equity roll-up optimization is indeed a very good business model: like how spreadsheets drove traditional private equity back in the day, AI might create a new kind of private equity: buy companies, optimize with AI, increase value.

But we won't do it, for two reasons:

First, culturally opposite. We are about "building new things," believe in entrepreneurs, pursue growth; private equity core is "entry price," emphasizes cost and optimization, not typical VC mindset.

Second, I don't want to do a business that "makes money by optimizing existing things, layoffs, etc." We prefer to help new technology companies create the future.

The Cost of Scaling: Culture Drifts, So Culture Must Be Defined by "Behavior"

Interviewer: What trade-offs does your large scale bring?

Ben: The larger the scale, the more you must be extremely focused on culture, otherwise culture will drift. Our investment in culture probably exceeds that of any VC: sign a culture document before joining; I spend an hour with each employee explaining culture; execution is also very strict.

Interviewer: How do you define culture? How do you design it and ensure people truly follow it?

Ben: The most important insight comes from Bushido: Culture is not a set of ideas, but a set of actions.

If you write culture as "integrity," "support each other," "do the right thing," that's mostly empty slogans. You must turn it into specific behaviors: for example, if you say "respect entrepreneurs," what is the behavior?

  • Cannot be late for meetings with entrepreneurs. I even fined people by the minute in the early days of my startup.

  • Must reply promptly. Even if rejecting, say "no" clearly and explain why.

  • We will survey the entrepreneur's experience after you reject them to ensure it was good.

  • If you belittle entrepreneurs to make yourself look smart, you will be fired. We are "dream builders," not "dream killers."

Culture is implemented through actions, not pretty words.

Father's Influence: Shift from Left to Right, "Flowers Are Cheap, Divorce Is Expensive"

Interviewer: You mentioned your father gave you a lot of influence, like "life isn't fair." Can you talk more about him?

Ben: He was a so-called "red diaper baby." My grandparents were communists, held secret meetings, had party cards. My grandfather was fired during the McCarthy era due to communist background.

My father was left-wing when young, was an editor for the famous left-wing magazine "Ramparts," and also had connections with the Black Panthers. Later he left politics for a while, then reemerged on the right-wing stance. He understood the problems of socialism, communism very well, which helped me a lot.

He said something to me that I remember for life: go to the library and pick any book about socialism, you'll see page after page about how to "distribute wealth," but you won't find a single sentence about how to "create wealth." This taught me systems thinking.

He wasn't the "new age father" type, more like the old-era father: didn't talk often, but occasionally gave you a very sharp, very practical piece of advice. Once I was with my three kids, weather 102 Fahrenheit, car broke down, kids spilled a whole gallon of apple juice on the carpet... I was about to崩溃. My father looked at me and said: "Son, you know what's cheap? Flowers. You know what's expensive? Divorce."—he had been married four times, so he knew what he was talking about.

The Frontier That Excites You Most Now: Programming, Film & TV, and "Postmodern" AI Art

Interviewer: What attracts and inspires you most right now?

Ben: The programming field has been amazing recently. People used to say "AI can write code," but there would be security vulnerabilities, like "vibe coding." But after this holiday season, there was an inflection point: truly great programmers started saying—"Wow, this is really helping me," productivity seems to have suddenly increased 100x. There are few technologies that can make the world change overnight, but it's happening regularly now.

We also spend a lot of time talking to Hollywood people about AI. AI might make movies better, cheaper: you shoot three takes, then AI generates high-quality variants and combinations, no need to shoot 15-20 takes. A powerful tool for creators. Music is the same, might enter a "postmodern art" phase. Like when hip-hop was criticized for sampling "not being music," but that was actually the moment a new art form was born.

Interviewer: Which hip-hop figures influenced you the most?

Ben: Nas is a very good friend of mine, he's had a big influence. His way of seeing the world is so different, constantly gives me new perspectives. We both really like Rakim. He has a lyric "Turn up the bass... I’m letting knowledge be born", Nas paused and asked me: "Why is he handing out cigars?" I said I didn't know. Nas said: "This is about knowledge being born, you hand out cigars when a child is born." I'd listened to that song a thousand times and never caught that.

He often hears what I can't hear, sees what I can't see. This completely different perspective is very precious.

Interestingly, we also did the Coinbase investment together. Nas called me earlier asking about Bitcoin, I explained the原理 to him. Later I asked Chris Dixon about the founders of this company, Chris said one of them loved hip-hop. I invited Nas to my house to watch a game, everyone met and talked—that促成 the investment.

Las Vegas Police Department Collaboration Project

Interviewer: Can you talk about your collaboration project with the Las Vegas Police Department? It seems like a case of "new technology improving public systems."

Ben: The Las Vegas Police Department has several characteristics that attracted me:

They are led by an elected sheriff, don't report to the mayor, so they didn't get caught up in the "defund the police" political movement, one of the few cities that didn't cut budgets. They also didn't go towards over-militarization, more community policing. The data speaks for itself: Las Vegas's murder solve rate is 94%, San Francisco about 75%, Chicago 30%+, national average under 60%.

I asked Sheriff Kevin McMahill: why is the solve rate so high? He said: when a murder happens, someone always knows who the killer is, but they don't tell the police. They tell us, because we are part of the community.

I thought this would be a perfect "proving ground" for technology deployment. We invested in a lot of public safety technology in our American Dynamism project. I said: we are going to become the most high-tech police department in the U.S., even globally—I'll pay for it.

We built a drone program, 911 dispatch technology, AI camera system, etc. Whenever there's a 911 call or gunshot detection, a drone can be on scene within 90 seconds; video is immediately pushed to every officer's phone nearby.

After deployment, crime rates dropped over 50%; officer-involved shootings of suspects dropped nearly 75%. Everyone is safer—suspects, ordinary citizens, police are all safer.

What surprised me most was: a lot of violent conflicts come from "misdescription." For example, a carjacking is reported as "2004 blue Hyundai," but it might actually be "2008 green Hyundai." Police stop the wrong car, some people have trauma with police, there's a gun in the car,就容易发生悲剧. With AI cameras, we know it's the target car, and can even know there's a baby in the car. So we don't send one officer to "try," but organize a full force, safely control the situation.

Policing is inherently dangerous, but intelligence and technology significantly reduce the danger.

Another连带 effect is: technology makes the police profession "dignified, attractive" again. In the past, because no one wanted to be a police officer, we had to lower standards; now standards are反而提高. The drone center is very advanced, even has futuristic-looking vehicles on patrol, making many people want to join. Las Vegas has a high proportion of veterans, so talent pool is strong too.

Final Question: What Is the Greatest Kindness You've Experienced?

Interviewer: My last question is always the same: what is the kindest thing someone has ever done for you?

Ben: I had a mentor, Ken Coleman, he was an executive at Silicon Graphics at the time. I was introduced to him in my sophomore year of college, and he gave me a summer internship. Without that job, I probably wouldn't have come to Silicon谷, and none of what followed would have happened. This was something he didn't have to do for me, but it changed my life.

Interviewer: This type of answer is the most common in the 500+ interviews I've done: someone was willing to bet on you when they didn't have to. Ben, very glad to finally have this conversation with you, thank you for your time.


Twitter:https://twitter.com/BitpushNewsCN

Bitpush TG Discussion Group:https://t.me/BitPushCommunity

Bitpush TG Subscription: https://t.me/bitpush

Original link:https://www.bitpush.news/articles/7609287

Related Questions

QAccording to Ben Horowitz, what is the biggest risk to the AI revolution, and why?

ABen Horowitz believes the biggest risk to the AI revolution is policy, specifically over-regulation. He argues that bad government policies, such as excessive regulation or even a potential ban on AI, could directly slow down or halt technological leadership. He cites examples like a previous U.S. administration's executive order that nearly required federal approval to sell GPUs, which could have crippled global chip competition.

QHow does Ben Horowitz view the impact of AI on inequality and opportunity?

ABen Horowitz acknowledges that AI can amplify wealth concentration, similar to the 'Kobe Effect,' where top performers gain disproportionately due to global scale. However, he also sees a positive side: AI is highly democratizing from day one. With a smartphone, anyone can access powerful AI assistants, top-tier educational resources, and professional advice (e.g., legal, accounting), making it one of the greatest opportunity equalizers. He emphasizes that while life is inherently unfair, what matters is providing opportunities for upward mobility, which AI enhances.

QWhat was the key strategy a16z used to break into the top tier of venture capital firms despite starting with no track record?

Aa16z's key strategy was to redefine the 'product' offered to entrepreneurs. Recognizing that venture capital was a good product for LPs but not for founders, they focused on systematically empowering founders with confidence, knowledge, networks, and judgment frameworks. They also broke industry norms by actively marketing and publicly sharing their views, which quickly differentiated them and attracted media attention, helping them gain credibility and access to top deals.

QWhy does Ben Horowitz believe that AI will not lead to permanent mass unemployment?

ABen Horowitz is skeptical about predictions of mass unemployment due to AI, drawing parallels to historical automation shifts. He notes that from agriculture to modern times, automation eliminated jobs but also created new, previously unimaginable professions. He points out that AI has been developing since around 2012 (e.g., in image recognition and NLP), yet no massive job destruction has occurred. He argues it is difficult to predict what new jobs AI will create and that opportunities often multiply with new technologies.

QWhat is the core principle Ben Horowitz emphasizes for maintaining company culture as an organization scales?

ABen Horowitz emphasizes that culture must be defined by actions, not just ideas or slogans. He believes that to prevent cultural drift at scale, companies must translate cultural values into specific, enforceable behaviors. For example, at a16z, 'respect for entrepreneurs' is actionized through rules like never being late to meetings with founders, responding promptly to communications, and never demeaning entrepreneurs to appear smart. This behavioral approach ensures culture is practical and consistently upheld.

Related Reads

Trading

Spot
Futures

Hot Articles

O que é GROK AI

Grok AI: Revolucionar a Tecnologia Conversacional na Era Web3 Introdução No panorama em rápida evolução da inteligência artificial, a Grok AI destaca-se como um projeto notável que liga os domínios da tecnologia avançada e da interação com o utilizador. Desenvolvida pela xAI, uma empresa liderada pelo renomado empreendedor Elon Musk, a Grok AI procura redefinir a forma como interagimos com a inteligência artificial. À medida que o movimento Web3 continua a florescer, a Grok AI visa aproveitar o poder da IA conversacional para responder a consultas complexas, proporcionando aos utilizadores uma experiência que é não apenas informativa, mas também divertida. O que é a Grok AI? A Grok AI é um sofisticado chatbot de IA conversacional projetado para interagir com os utilizadores de forma dinâmica. Ao contrário de muitos sistemas de IA tradicionais, a Grok AI abraça uma gama mais ampla de perguntas, incluindo aquelas tipicamente consideradas inadequadas ou fora das respostas padrão. Os principais objetivos do projeto incluem: Raciocínio Fiável: A Grok AI enfatiza o raciocínio de senso comum para fornecer respostas lógicas com base na compreensão contextual. Supervisão Escalável: A integração de assistência de ferramentas garante que as interações dos utilizadores sejam monitorizadas e otimizadas para qualidade. Verificação Formal: A segurança é primordial; a Grok AI incorpora métodos de verificação formal para aumentar a fiabilidade das suas saídas. Compreensão de Longo Contexto: O modelo de IA destaca-se na retenção e recordação de um extenso histórico de conversas, facilitando discussões significativas e contextualizadas. Robustez Adversarial: Ao focar na melhoria das suas defesas contra entradas manipuladas ou maliciosas, a Grok AI visa manter a integridade das interações dos utilizadores. Em essência, a Grok AI não é apenas um dispositivo de recuperação de informações; é um parceiro conversacional imersivo que incentiva um diálogo dinâmico. Criador da Grok AI A mente por trás da Grok AI não é outra senão Elon Musk, um indivíduo sinónimo de inovação em vários campos, incluindo automóvel, viagens espaciais e tecnologia. Sob a égide da xAI, uma empresa focada em avançar a tecnologia de IA de maneiras benéficas, a visão de Musk visa reformular a compreensão das interações com a IA. A liderança e a ética fundacional são profundamente influenciadas pelo compromisso de Musk em ultrapassar os limites tecnológicos. Investidores da Grok AI Embora os detalhes específicos sobre os investidores que apoiam a Grok AI permaneçam limitados, é reconhecido publicamente que a xAI, a incubadora do projeto, é fundada e apoiada principalmente pelo próprio Elon Musk. As anteriores empreitadas e participações de Musk fornecem um forte apoio, reforçando ainda mais a credibilidade e o potencial de crescimento da Grok AI. No entanto, até agora, informações sobre fundações ou organizações de investimento adicionais que apoiam a Grok AI não estão prontamente acessíveis, marcando uma área para exploração futura potencial. Como Funciona a Grok AI? A mecânica operacional da Grok AI é tão inovadora quanto a sua estrutura conceptual. O projeto integra várias tecnologias de ponta que facilitam as suas funcionalidades únicas: Infraestrutura Robusta: A Grok AI é construída utilizando Kubernetes para orquestração de contêineres, Rust para desempenho e segurança, e JAX para computação numérica de alto desempenho. Este trio assegura que o chatbot opere de forma eficiente, escale eficazmente e sirva os utilizadores prontamente. Acesso a Conhecimento em Tempo Real: Uma das características distintivas da Grok AI é a sua capacidade de aceder a dados em tempo real através da plataforma X—anteriormente conhecida como Twitter. Esta capacidade concede à IA acesso às informações mais recentes, permitindo-lhe fornecer respostas e recomendações oportunas que outros modelos de IA poderiam perder. Dois Modos de Interação: A Grok AI oferece aos utilizadores a escolha entre “Modo Divertido” e “Modo Regular”. O Modo Divertido permite um estilo de interação mais lúdico e humorístico, enquanto o Modo Regular foca em fornecer respostas precisas e exatas. Esta versatilidade assegura uma experiência adaptada que atende a várias preferências dos utilizadores. Em essência, a Grok AI combina desempenho com envolvimento, criando uma experiência que é tanto enriquecedora quanto divertida. Cronologia da Grok AI A jornada da Grok AI é marcada por marcos fundamentais que refletem as suas fases de desenvolvimento e implementação: Desenvolvimento Inicial: A fase fundamental da Grok AI ocorreu ao longo de aproximadamente dois meses, durante os quais o treinamento inicial e o ajuste do modelo foram realizados. Lançamento Beta do Grok-2: Numa evolução significativa, o beta do Grok-2 foi anunciado. Este lançamento introduziu duas versões do chatbot—Grok-2 e Grok-2 mini—cada uma equipada com capacidades para conversar, programar e raciocinar. Acesso Público: Após o seu desenvolvimento beta, a Grok AI tornou-se disponível para os utilizadores da plataforma X. Aqueles com contas verificadas por um número de telefone e ativas há pelo menos sete dias podem aceder a uma versão limitada, tornando a tecnologia disponível para um público mais amplo. Esta cronologia encapsula o crescimento sistemático da Grok AI desde a sua concepção até ao envolvimento público, enfatizando o seu compromisso com a melhoria contínua e a interação com o utilizador. Principais Características da Grok AI A Grok AI abrange várias características principais que contribuem para a sua identidade inovadora: Integração de Conhecimento em Tempo Real: O acesso a informações atuais e relevantes diferencia a Grok AI de muitos modelos estáticos, permitindo uma experiência de utilizador envolvente e precisa. Estilos de Interação Versáteis: Ao oferecer modos de interação distintos, a Grok AI atende a várias preferências dos utilizadores, convidando à criatividade e personalização na conversa com a IA. Base Tecnológica Avançada: A utilização de Kubernetes, Rust e JAX fornece ao projeto uma estrutura sólida para garantir fiabilidade e desempenho ótimo. Consideração de Discurso Ético: A inclusão de uma função de geração de imagens demonstra o espírito inovador do projeto. No entanto, também levanta considerações éticas em torno dos direitos autorais e da representação respeitosa de figuras reconhecíveis—uma discussão em curso dentro da comunidade de IA. Conclusão Como uma entidade pioneira no domínio da IA conversacional, a Grok AI encapsula o potencial para experiências transformadoras do utilizador na era digital. Desenvolvida pela xAI e impulsionada pela abordagem visionária de Elon Musk, a Grok AI integra conhecimento em tempo real com capacidades avançadas de interação. Esforça-se por ultrapassar os limites do que a inteligência artificial pode alcançar, mantendo um foco nas considerações éticas e na segurança do utilizador. A Grok AI não apenas incorpora o avanço tecnológico, mas também representa um novo paradigma de conversas no panorama Web3, prometendo envolver os utilizadores com conhecimento hábil e interação lúdica. À medida que o projeto continua a evoluir, ele permanece como um testemunho do que a interseção da tecnologia, criatividade e interação humana pode alcançar.

161 Total ViewsPublished 2024.12.26Updated 2024.12.26

O que é ERC AI

Euruka Tech: Uma Visão Geral do $erc ai e as suas Ambições no Web3 Introdução No panorama em rápida evolução da tecnologia blockchain e das aplicações descentralizadas, novos projetos surgem frequentemente, cada um com objetivos e metodologias únicas. Um desses projetos é a Euruka Tech, que opera no vasto domínio das criptomoedas e do Web3. O foco principal da Euruka Tech, particularmente do seu token $erc ai, é apresentar soluções inovadoras concebidas para aproveitar as capacidades crescentes da tecnologia descentralizada. Este artigo tem como objetivo fornecer uma visão abrangente da Euruka Tech, uma exploração das suas metas, funcionalidade, a identidade do seu criador, potenciais investidores e a sua importância no contexto mais amplo do Web3. O que é a Euruka Tech, $erc ai? A Euruka Tech é caracterizada como um projeto que aproveita as ferramentas e funcionalidades oferecidas pelo ambiente Web3, focando na integração da inteligência artificial nas suas operações. Embora os detalhes específicos sobre a estrutura do projeto sejam um tanto elusivos, ele é concebido para melhorar o envolvimento dos utilizadores e automatizar processos no espaço cripto. O projeto visa criar um ecossistema descentralizado que não só facilita transações, mas também incorpora funcionalidades preditivas através da inteligência artificial, daí a designação do seu token, $erc ai. O objetivo é fornecer uma plataforma intuitiva que facilite interações mais inteligentes e um processamento eficiente de transações dentro da crescente esfera do Web3. Quem é o Criador da Euruka Tech, $erc ai? Neste momento, a informação sobre o criador ou a equipa fundadora da Euruka Tech permanece não especificada e algo opaca. Esta ausência de dados levanta preocupações, uma vez que o conhecimento sobre o histórico da equipa é frequentemente essencial para estabelecer credibilidade no setor blockchain. Portanto, categorizamos esta informação como desconhecida até que detalhes concretos sejam disponibilizados no domínio público. Quem são os Investidores da Euruka Tech, $erc ai? De forma semelhante, a identificação de investidores ou organizações de apoio para o projeto Euruka Tech não é prontamente fornecida através da pesquisa disponível. Um aspeto que é crucial para potenciais partes interessadas ou utilizadores que consideram envolver-se com a Euruka Tech é a garantia que vem de parcerias financeiras estabelecidas ou apoio de empresas de investimento respeitáveis. Sem divulgações sobre afiliações de investimento, é difícil tirar conclusões abrangentes sobre a segurança financeira ou a longevidade do projeto. Em linha com a informação encontrada, esta seção também se encontra no estado de desconhecido. Como funciona a Euruka Tech, $erc ai? Apesar da falta de especificações técnicas detalhadas para a Euruka Tech, é essencial considerar as suas ambições inovadoras. O projeto procura aproveitar o poder computacional da inteligência artificial para automatizar e melhorar a experiência do utilizador no ambiente das criptomoedas. Ao integrar IA com tecnologia blockchain, a Euruka Tech visa fornecer funcionalidades como negociações automatizadas, avaliações de risco e interfaces de utilizador personalizadas. A essência inovadora da Euruka Tech reside no seu objetivo de criar uma conexão fluida entre os utilizadores e as vastas possibilidades apresentadas pelas redes descentralizadas. Através da utilização de algoritmos de aprendizagem automática e IA, visa minimizar os desafios enfrentados por utilizadores de primeira viagem e agilizar as experiências transacionais dentro do quadro do Web3. Esta simbiose entre IA e blockchain sublinha a importância do token $erc ai, que se apresenta como uma ponte entre interfaces de utilizador tradicionais e as capacidades avançadas das tecnologias descentralizadas. Cronologia da Euruka Tech, $erc ai Infelizmente, devido à informação limitada disponível sobre a Euruka Tech, não conseguimos apresentar uma cronologia detalhada dos principais desenvolvimentos ou marcos na jornada do projeto. Esta cronologia, tipicamente inestimável para traçar a evolução de um projeto e compreender a sua trajetória de crescimento, não está atualmente disponível. À medida que informações sobre eventos notáveis, parcerias ou adições funcionais se tornem evidentes, atualizações certamente aumentarão a visibilidade da Euruka Tech na esfera cripto. Esclarecimento sobre Outros Projetos “Eureka” É importante abordar que múltiplos projetos e empresas partilham uma nomenclatura semelhante com “Eureka.” A pesquisa identificou iniciativas como um agente de IA da NVIDIA Research, que se concentra em ensinar robôs a realizar tarefas complexas utilizando métodos generativos, bem como a Eureka Labs e a Eureka AI, que melhoram a experiência do utilizador na educação e na análise de serviços ao cliente, respetivamente. No entanto, estes projetos são distintos da Euruka Tech e não devem ser confundidos com os seus objetivos ou funcionalidades. Conclusão A Euruka Tech, juntamente com o seu token $erc ai, representa um jogador promissor, mas atualmente obscuro, dentro do panorama do Web3. Embora os detalhes sobre o seu criador e investidores permaneçam não divulgados, a ambição central de combinar inteligência artificial com tecnologia blockchain destaca-se como um ponto focal de interesse. As abordagens únicas do projeto em promover o envolvimento do utilizador através da automação avançada podem diferenciá-lo à medida que o ecossistema Web3 avança. À medida que o mercado cripto continua a evoluir, as partes interessadas devem manter um olhar atento sobre os avanços em torno da Euruka Tech, uma vez que o desenvolvimento de inovações documentadas, parcerias ou um roteiro definido pode apresentar oportunidades significativas no futuro próximo. Neste momento, aguardamos por insights mais substanciais que possam desvendar o potencial da Euruka Tech e a sua posição no competitivo panorama cripto.

165 Total ViewsPublished 2025.01.02Updated 2025.01.02

O que é DUOLINGO AI

DUOLINGO AI: Integrar a Aprendizagem de Línguas com Inovação Web3 e IA Numa era em que a tecnologia transforma a educação, a integração da inteligência artificial (IA) e das redes blockchain anuncia uma nova fronteira para a aprendizagem de línguas. Apresentamos DUOLINGO AI e a sua criptomoeda associada, $DUOLINGO AI. Este projeto aspira a unir o poder educativo das principais plataformas de aprendizagem de línguas com os benefícios da tecnologia descentralizada Web3. Este artigo explora os principais aspectos do DUOLINGO AI, analisando os seus objetivos, estrutura tecnológica, desenvolvimento histórico e potencial futuro, mantendo a clareza entre o recurso educativo original e esta iniciativa independente de criptomoeda. Visão Geral do DUOLINGO AI No seu cerne, DUOLINGO AI procura estabelecer um ambiente descentralizado onde os alunos podem ganhar recompensas criptográficas por alcançar marcos educativos em proficiência linguística. Ao aplicar contratos inteligentes, o projeto visa automatizar processos de verificação de habilidades e alocação de tokens, aderindo aos princípios do Web3 que enfatizam a transparência e a propriedade do utilizador. O modelo diverge das abordagens tradicionais de aquisição de línguas ao apoiar-se fortemente numa estrutura de governança orientada pela comunidade, permitindo que os detentores de tokens sugiram melhorias ao conteúdo dos cursos e à distribuição de recompensas. Alguns dos objetivos notáveis do DUOLINGO AI incluem: Aprendizagem Gamificada: O projeto integra conquistas em blockchain e tokens não fungíveis (NFTs) para representar níveis de proficiência linguística, promovendo a motivação através de recompensas digitais envolventes. Criação de Conteúdo Descentralizada: Abre caminhos para educadores e entusiastas de línguas contribuírem com os seus cursos, facilitando um modelo de partilha de receitas que beneficia todos os colaboradores. Personalização Através de IA: Ao empregar modelos avançados de aprendizagem de máquina, o DUOLINGO AI personaliza as lições para se adaptar ao progresso de aprendizagem individual, semelhante às características adaptativas encontradas em plataformas estabelecidas. Criadores do Projeto e Governança A partir de abril de 2025, a equipa por trás do $DUOLINGO AI permanece pseudónima, uma prática frequente no panorama descentralizado das criptomoedas. Esta anonimidade visa promover o crescimento coletivo e o envolvimento das partes interessadas, em vez de se concentrar em desenvolvedores individuais. O contrato inteligente implementado na blockchain Solana indica o endereço da carteira do desenvolvedor, o que significa o compromisso com a transparência em relação às transações, apesar da identidade dos criadores ser desconhecida. De acordo com o seu roteiro, o DUOLINGO AI pretende evoluir para uma Organização Autónoma Descentralizada (DAO). Esta estrutura de governança permite que os detentores de tokens votem em questões críticas, como implementações de funcionalidades e alocação de tesouraria. Este modelo alinha-se com a ética de empoderamento comunitário encontrada em várias aplicações descentralizadas, enfatizando a importância da tomada de decisão coletiva. Investidores e Parcerias Estratégicas Atualmente, não existem investidores institucionais ou capitalistas de risco publicamente identificáveis ligados ao $DUOLINGO AI. Em vez disso, a liquidez do projeto origina-se principalmente de trocas descentralizadas (DEXs), marcando um contraste acentuado com as estratégias de financiamento das empresas tradicionais de tecnologia educacional. Este modelo de base indica uma abordagem orientada pela comunidade, refletindo o compromisso do projeto com a descentralização. No seu whitepaper, o DUOLINGO AI menciona a formação de colaborações com “plataformas de educação blockchain” não especificadas, com o objetivo de enriquecer a sua oferta de cursos. Embora parcerias específicas ainda não tenham sido divulgadas, estes esforços colaborativos sugerem uma estratégia para misturar inovação em blockchain com iniciativas educativas, expandindo o acesso e o envolvimento dos utilizadores em diversas vias de aprendizagem. Arquitetura Tecnológica Integração de IA O DUOLINGO AI incorpora dois componentes principais impulsionados por IA para melhorar as suas ofertas educativas: Motor de Aprendizagem Adaptativa: Este motor sofisticado aprende a partir das interações dos utilizadores, semelhante a modelos proprietários de grandes plataformas educativas. Ele ajusta dinamicamente a dificuldade das lições para abordar desafios específicos dos alunos, reforçando áreas fracas através de exercícios direcionados. Agentes Conversacionais: Ao empregar chatbots alimentados por GPT-4, o DUOLINGO AI oferece uma plataforma para os utilizadores se envolverem em conversas simuladas, promovendo uma experiência de aprendizagem de línguas mais interativa e prática. Infraestrutura Blockchain Construído na blockchain Solana, o $DUOLINGO AI utiliza uma estrutura tecnológica abrangente que inclui: Contratos Inteligentes de Verificação de Habilidades: Esta funcionalidade atribui automaticamente tokens aos utilizadores que passam com sucesso em testes de proficiência, reforçando a estrutura de incentivos para resultados de aprendizagem genuínos. Emblemas NFT: Estes tokens digitais significam vários marcos que os alunos alcançam, como completar uma seção do seu curso ou dominar habilidades específicas, permitindo-lhes negociar ou exibir as suas conquistas digitalmente. Governança DAO: Membros da comunidade com tokens podem participar na governança votando em propostas-chave, facilitando uma cultura participativa que incentiva a inovação nas ofertas de cursos e funcionalidades da plataforma. Cronologia Histórica 2022–2023: Conceituação O trabalho preliminar para o DUOLINGO AI começa com a criação de um whitepaper, destacando a sinergia entre os avanços em IA na aprendizagem de línguas e o potencial descentralizado da tecnologia blockchain. 2024: Lançamento Beta Um lançamento beta limitado introduz ofertas em línguas populares, recompensando os primeiros utilizadores com incentivos em tokens como parte da estratégia de envolvimento comunitário do projeto. 2025: Transição para DAO Em abril, ocorre um lançamento completo da mainnet com a circulação de tokens, promovendo discussões comunitárias sobre possíveis expansões para línguas asiáticas e outros desenvolvimentos de cursos. Desafios e Direções Futuras Obstáculos Técnicos Apesar dos seus objetivos ambiciosos, o DUOLINGO AI enfrenta desafios significativos. A escalabilidade continua a ser uma preocupação constante, particularmente no equilíbrio dos custos associados ao processamento de IA e à manutenção de uma rede descentralizada responsiva. Além disso, garantir a criação e moderação de conteúdo de qualidade num ambiente descentralizado apresenta complexidades na manutenção dos padrões educativos. Oportunidades Estratégicas Olhando para o futuro, o DUOLINGO AI tem o potencial de aproveitar parcerias de micro-certificação com instituições académicas, proporcionando validações verificadas em blockchain das habilidades linguísticas. Além disso, a expansão cross-chain poderia permitir que o projeto acedesse a bases de utilizadores mais amplas e a ecossistemas de blockchain adicionais, melhorando a sua interoperabilidade e alcance. Conclusão DUOLINGO AI representa uma fusão inovadora de inteligência artificial e tecnologia blockchain, apresentando uma alternativa focada na comunidade aos sistemas tradicionais de aprendizagem de línguas. Embora o seu desenvolvimento pseudónimo e o modelo económico emergente tragam certos riscos, o compromisso do projeto com a aprendizagem gamificada, educação personalizada e governança descentralizada ilumina um caminho a seguir para a tecnologia educativa no domínio do Web3. À medida que a IA continua a avançar e o ecossistema blockchain evolui, iniciativas como o DUOLINGO AI poderão redefinir a forma como os utilizadores interagem com a educação linguística, empoderando comunidades e recompensando o envolvimento através de mecanismos de aprendizagem inovadores.

179 Total ViewsPublished 2025.04.11Updated 2025.04.11

Discussions

Welcome to the HTX Community. Here, you can stay informed about the latest platform developments and gain access to professional market insights. Users' opinions on the price of AI (AI) are presented below.

活动图片