Visa Crypto Head: Eight Major Evolution Directions for Crypto and AI by 2026

marsbitPubblicato 2026-01-07Pubblicato ultima volta 2026-01-07

Introduzione

Cuy Sheffield, Head of Crypto at Visa, outlines eight key themes for the evolution of cryptocurrency and AI by 2026, emphasizing a shift from theoretical potential to practical, reliable implementation. Cryptocurrency is transitioning from a speculative asset class into a high-quality technology. Its underlying infrastructure has become faster, cheaper, and more reliable, shifting its primary value from speculation to utility, particularly for payments and settlement. Stable币 are the clearest example of this, succeeding on objective merits like cost, speed, and global reach, and enabling adoption without ideological buy-in. As crypto becomes infrastructure, distribution capabilities and existing customer relationships—often held by large, regulated institutions—will matter more than pure technical novelty. For AI, the focus is shifting from raw intelligence to trust and reliability. AI agents are proving most valuable not as autonomous entities but as tools that reduce coordination costs in knowledge work—spanning research, analysis, and operations, not just coding. Their current limitation isn't capability but trust, requiring systems that are verifiable, consistent, and transparent. Successful AI integration is now a systems engineering challenge, relying on architecture, state management, and monitoring, not just model prompts. This development is creating a tension between the capital-intensive, centralized development of frontier models and the rapid iteration of ope...

Original Author: Cuy Sheffield, Vice President and Head of Crypto at Visa

Original Compilation: Saoirse, Foresight News

As cryptocurrency and AI gradually mature, the most important transformations in these two fields are no longer "theoretically feasible" but "reliably implementable in practice." Currently, both technologies have crossed critical thresholds, achieving significant performance improvements, but their practical adoption rates remain uneven. The core developments in 2026 will stem from this gap between performance and adoption."

Below are several key themes I have been following, along with preliminary thoughts on the direction of these technological developments, areas of value accumulation, and "why the eventual winners may differ entirely from the industry pioneers."

Theme 1: Cryptocurrency is transitioning from a speculative asset class to a high-quality technology

The first decade of cryptocurrency development was characterized by "speculative advantages"—its market is global, continuous, and highly open, with extreme volatility making cryptocurrency trading more dynamic and attractive than traditional financial markets.

However, the underlying technology was not yet ready for mainstream adoption: early blockchains were slow, expensive, and unstable. Beyond speculative scenarios, cryptocurrency almost never outperformed existing traditional systems in terms of cost, speed, or convenience.

Today, this imbalance is beginning to reverse. Blockchain technology has become faster, more economical, and more reliable. The most attractive application scenarios for cryptocurrency are no longer speculative but lie in infrastructure—particularly in settlement and payment processes. As cryptocurrency evolves into a more mature technology, speculation will gradually lose its central role: it will not disappear entirely but will no longer be the primary source of value.

Theme 2: Stablecoins are a clear achievement of cryptocurrency's "pure utility"

Stablecoins differ from previous cryptocurrency narratives in that their success is based on specific, objective criteria: in certain scenarios, stablecoins are faster, cheaper, and more widely accessible than traditional payment channels, while seamlessly integrating into modern software systems.

Stablecoins do not require users to view cryptocurrency as an "ideology" to believe in. Their applications often occur "implicitly" within existing products and workflows—this has finally enabled institutions and enterprises that considered the cryptocurrency ecosystem "too volatile and insufficiently transparent" to clearly understand its value.

It can be said that stablecoins help re-anchor cryptocurrency to "utility" rather than "speculation," setting a clear benchmark for "how cryptocurrency can succeed in practice."

Theme 3: When cryptocurrency becomes infrastructure, "distribution capability" is more important than "technological novelty"

In the past, when cryptocurrency primarily served as a "speculative tool," its "distribution" was endogenous—new tokens only needed to "exist" to naturally accumulate liquidity and attention.

As cryptocurrency becomes infrastructure, its application scenarios are shifting from the "market level" to the "product level": it is embedded in payment processes, platforms, and enterprise systems, often without end-users being aware of its presence.

This shift greatly benefits two types of entities: first, enterprises with existing distribution channels and reliable customer relationships; second, institutions with regulatory licenses, compliance systems, and risk management infrastructure. Relying solely on "protocol novelty" is no longer sufficient to drive large-scale adoption of cryptocurrency.

Theme 4: AI agents possess practical value, and their impact is extending beyond the coding field

The practicality of AI agents (Agents) is increasingly evident, but their role is misunderstood: the most successful agents are not "autonomous decision-makers" but "tools that reduce coordination costs in workflows."

Historically, this has been most evident in software development—agent tools accelerate coding, debugging, code refactoring, and environment setup. In recent years, however, this "tool value" has significantly expanded to more fields.

Take tools like Claude Code as an example. Although positioned as a "developer tool," its rapid adoption reflects a deeper trend: agent systems are becoming "interfaces for knowledge work," not limited to programming alone. Users are beginning to apply "agent-driven workflows" to research, analysis, writing, planning, data processing, and operational tasks—tasks that lean more toward "general professional work" than traditional programming.

The key is not "ambient coding" itself but the core pattern behind it:

  • Users delegate "intentions and goals," not "specific steps";
  • Agents manage "contextual information" across files, tools, and tasks;
  • The work mode shifts from "linear progression" to "iterative, conversational."

In various knowledge work scenarios, agents excel at gathering context, executing bounded tasks, reducing handoffs, and accelerating iteration efficiency. However, they still have shortcomings in "open-ended judgment," "accountability," and "error correction."

Therefore, most agents used in production scenarios still need to be "scoped, supervised, and embedded in systems," rather than operating fully independently. The practical value of agents stems from the "restructuring of knowledge workflows," not "replacing labor" or "achieving full autonomy."

Theme 5: AI's bottleneck has shifted from "intelligence level" to "trustworthiness"

AI models have rapidly improved in intelligence. The current limiting factor is no longer "singular language fluency or reasoning ability" but "reliability in practical systems."

Production environments have zero tolerance for three types of issues: first, AI "hallucinations" (generating false information); second, inconsistent outputs; third, opaque failure modes. Once AI involves customer service, financial transactions, or compliance, "roughly correct" results are no longer acceptable.

Establishing "trust" requires four foundations: first, traceability of results; second, memory capability; third, verifiability; fourth, the ability to proactively expose "uncertainty." Before these capabilities mature sufficiently, AI's autonomy must be constrained.

Theme 6: Systems engineering determines whether AI can be deployed in production scenarios

Successful AI products treat "models" as "components" rather than "finished products"—their reliability stems from "architectural design," not "prompt optimization."

Here, "architectural design" includes state management, control flow, evaluation and monitoring systems, and fault handling and recovery mechanisms. This is why AI development is increasingly resembling "traditional software engineering" rather than "cutting-edge theoretical research."

Long-term value will accrue to two types of entities: first, system builders; second, platform owners who control workflows and distribution channels.

As agent tools expand from coding to research, writing, analysis, and operational processes, the importance of "systems engineering" will become even more pronounced: knowledge work is often complex, state-dependent, and context-intensive, making agents that "reliably manage memory, tools, and iterative processes" (not just generate outputs) more valuable.

Theme 7: The contradiction between open models and centralized control raises unresolved governance issues

As AI systems become more powerful and integrate deeper into the economic sphere, the question of "who owns and controls the most powerful AI models" is creating core contradiction.

On one hand, R&D at the AI frontier remains "capital-intensive" and is increasingly concentrated due to "compute access, regulatory policies, and geopolitics"; on the other hand, open-source models and tools continue to iterate and improve, driven by "broad experimentation and ease of deployment."

This "coexistence of centralization and openness" has sparked a series of unresolved questions: dependency risk, auditability, transparency, long-term bargaining power, and control over critical infrastructure. The most likely outcome is a "hybrid model"—frontier models push the boundaries of technical capability, while open or semi-open systems integrate these capabilities into "widely distributed software."

Theme 8: Programmable money gives rise to new agent payment flows

When AI systems play a role in workflows, their need for "economic interaction" increases—such as paying for services, calling APIs, compensating other agents, or settling "usage-based interaction fees."

This demand has brought "stablecoins" back into focus: they are seen as "machine-native currency," programmable, auditable, and transferable without human intervention.

Take protocols like x402, aimed at developers, as an example. Although still in early experimental stages, the direction is clear: payment flows will operate as "APIs," not traditional "checkout pages"—enabling "continuous, granular transactions" between software agents.

Currently, this field is still nascent: transaction sizes are small, user experience is rough, and security and permission systems are still being refined. But infrastructure innovation often starts from such "early exploration."

Notably, the significance is not "autonomy for autonomy's sake" but rather that "new economic behaviors become possible when software can programmatically complete transactions."

Conclusion

Whether for cryptocurrency or artificial intelligence, the early development stages favored "eye-catching concepts" and "technological novelty"; in the next stage, "reliability," "governance capability," and "distribution capability" will become more critical competitive dimensions.

Today, the technology itself is no longer the primary limiting factor; "embedding the technology into actual systems" is the key.

In my view, the hallmark of 2026 will not be "a single breakthrough technology" but rather the "steady accumulation of infrastructure"—facilities that, while operating silently, are quietly reshaping "how value flows" and "how work is done."

Domande pertinenti

QAccording to the article, what is the key shift in the role of cryptocurrency as it matures?

ACryptocurrency is shifting from being a speculative asset class to becoming a high-quality technology, with its most attractive applications moving to infrastructure, particularly in settlement and payments.

QHow do stable币 (stablecoins) differ from previous cryptocurrency narratives in terms of their value proposition?

AStablecoins are successful based on concrete, objective standards like being faster, cheaper, and having broader coverage than traditional payment channels in specific scenarios, thereby anchoring cryptocurrency's value in utility rather than speculation.

QWhat is identified as a more critical factor than 'technical novelty' for the large-scale adoption of cryptocurrency as infrastructure?

ADistribution capability is more critical than technical novelty. This favors entities with existing distribution channels, reliable customer relationships, regulatory licenses, compliance systems, and risk infrastructure.

QWhat is the current major bottleneck for AI's practical application, according to the article?

AThe current major bottleneck for AI is no longer its level of intelligence but its trustworthiness and reliability in production systems, specifically concerning issues with AI 'hallucinations', inconsistent outputs, and opaque failure modes.

QWhat new economic behavior does the combination of programmable money (like stablecoins) and AI agents enable?

AIt enables new economic behaviors such as continuous, granular transactions between software agents, where payments flow as APIs rather than traditional checkout pages, allowing AI systems to pay for services, call APIs, and settle usage-based fees autonomously.

Letture associate

The Wolf Is Really Coming? Quantum Computing Threat to Bitcoin Is 'No Longer Theoretical', Analyst: 20-50% of Bitcoin Has 'Security Risks'

The threat of quantum computing to Bitcoin is accelerating from theoretical to practical, with analysts warning that 20-50% of Bitcoin’s supply—amounting to 4 to 10 million BTC—is vulnerable to quantum attacks. Coinbase’s research head David Duong highlighted that 32.7% of Bitcoin (6.51 million BTC) is at risk due to weak cryptographic practices, such as address reuse. Institutional investors are reacting: Jefferies’ Christopher Wood removed Bitcoin entirely from his portfolio, reallocating to gold, citing quantum computing as an existential risk to Bitcoin’s value proposition. Quantum computers could break Bitcoin’s elliptic curve digital signature algorithm (ECDSA), potentially exposing private keys. While current quantum systems are far from the estimated 13 million qubits needed to crack Bitcoin’s encryption, experts disagree on the timeline—some say 5 years, others 20-40 years. The Bitcoin community faces a governance dilemma: whether to preemptively destroy vulnerable coins or risk large-scale theft. Developers are proposing quantum-resistant upgrades, but implementation could take 5-10 years. Despite the concerns, some institutions like Harvard and Morgan Stanley continue to increase Bitcoin exposure, reflecting divergent risk assessments. The market is already pricing in these fears, with Bitcoin underperforming gold significantly.

华尔街日报5 min fa

The Wolf Is Really Coming? Quantum Computing Threat to Bitcoin Is 'No Longer Theoretical', Analyst: 20-50% of Bitcoin Has 'Security Risks'

华尔街日报5 min fa

Understanding Jensen Huang's Physical AI: Why Is Crypto's Opportunity Also Hidden in the 'Nooks and Crannies'?

Jensen Huang's recent speech at Davos signals a pivotal shift in AI: the transition from the training-focused "brute force" era of AI 1.0 to the new paradigm of "Physical AI" and inference. This marks the next phase after Generative AI, focusing on real-world application and embodiment. Physical AI aims to solve the "last-mile" problem of AI: moving from digital intelligence to physical action. While LLMs have consumed vast digital data, they lack understanding of the physical world—like how to twist open a bottle cap. Physical AI requires three core capabilities: 1. Spatial Intelligence: AI must perceive and interpret 3D environments in real-time, understanding object properties, depth, and interaction dynamics. 2. Virtual Training Grounds: Systems like NVIDIA’s Omniverse enable simulation-to-real (Sim-to-Real) training, allowing robots to learn through vast virtual iterations without costly physical failures. 3. Electronic Skin and Touch Data: Sensors that capture tactile feedback—temperature, pressure, texture—are critical. This data is a new, untapped asset class. This shift opens significant opportunities for Crypto and Web3 ecosystems. DePIN networks can crowdsource hyperlocal spatial data from "every corner" of the world through token incentives. Distributed computing networks can provide edge-based rendering and inference power for low-latency physical responses. Tokenized data ownership and privacy-preserving sharing mechanisms can enable the scalable, ethical collection of sensitive tactile data. In short, Physical AI isn’t just the next chapter for Web2—it’s a catalyst for Web3 domains like DePIN, DeData, and decentralized AI.

marsbit41 min fa

Understanding Jensen Huang's Physical AI: Why Is Crypto's Opportunity Also Hidden in the 'Nooks and Crannies'?

marsbit41 min fa

Trading

Spot
Futures

Articoli Popolari

Cosa è GROK AI

Grok AI: Rivoluzionare la Tecnologia Conversazionale nell'Era Web3 Introduzione Nel panorama in rapida evoluzione dell'intelligenza artificiale, Grok AI si distingue come un progetto notevole che collega i domini della tecnologia avanzata e dell'interazione con l'utente. Sviluppato da xAI, un'azienda guidata dal rinomato imprenditore Elon Musk, Grok AI cerca di ridefinire il modo in cui interagiamo con l'intelligenza artificiale. Mentre il movimento Web3 continua a prosperare, Grok AI mira a sfruttare il potere dell'IA conversazionale per rispondere a query complesse, offrendo agli utenti un'esperienza che è non solo informativa ma anche divertente. Cos'è Grok AI? Grok AI è un sofisticato chatbot di intelligenza artificiale conversazionale progettato per interagire dinamicamente con gli utenti. A differenza di molti sistemi di intelligenza artificiale tradizionali, Grok AI abbraccia un'ampia gamma di domande, comprese quelle tipicamente considerate inappropriate o al di fuori delle risposte standard. Gli obiettivi principali del progetto includono: Ragionamento Affidabile: Grok AI enfatizza il ragionamento di buon senso per fornire risposte logiche basate sulla comprensione contestuale. Supervisione Scalabile: L'integrazione dell'assistenza degli strumenti garantisce che le interazioni degli utenti siano sia monitorate che ottimizzate per la qualità. Verifica Formale: La sicurezza è fondamentale; Grok AI incorpora metodi di verifica formale per migliorare l'affidabilità delle sue uscite. Comprensione del Lungo Contesto: Il modello di IA eccelle nel trattenere e richiamare una vasta storia di conversazione, facilitando discussioni significative e consapevoli del contesto. Robustezza Adversariale: Concentrandosi sul miglioramento delle sue difese contro input manipolati o malevoli, Grok AI mira a mantenere l'integrità delle interazioni degli utenti. In sostanza, Grok AI non è solo un dispositivo di recupero informazioni; è un partner conversazionale immersivo che incoraggia un dialogo dinamico. Creatore di Grok AI Il cervello dietro Grok AI non è altri che Elon Musk, un individuo sinonimo di innovazione in vari campi, tra cui automotive, viaggi spaziali e tecnologia. Sotto l'egida di xAI, un'azienda focalizzata sull'avanzamento della tecnologia AI in modi benefici, la visione di Musk mira a rimodellare la comprensione delle interazioni con l'IA. La leadership e l'etica fondamentale sono profondamente influenzate dall'impegno di Musk nel superare i confini tecnologici. Investitori di Grok AI Sebbene i dettagli specifici riguardanti gli investitori che sostengono Grok AI rimangano limitati, è pubblicamente riconosciuto che xAI, l'incubatore del progetto, è fondato e supportato principalmente dallo stesso Elon Musk. Le precedenti imprese e partecipazioni di Musk forniscono un robusto sostegno, rafforzando ulteriormente la credibilità e il potenziale di crescita di Grok AI. Tuttavia, al momento, le informazioni riguardanti ulteriori fondazioni di investimento o organizzazioni che supportano Grok AI non sono facilmente accessibili, segnando un'area per potenziali esplorazioni future. Come Funziona Grok AI? Le meccaniche operative di Grok AI sono innovative quanto il suo framework concettuale. Il progetto integra diverse tecnologie all'avanguardia che facilitano le sue funzionalità uniche: Infrastruttura Robusta: Grok AI è costruito utilizzando Kubernetes per l'orchestrazione dei container, Rust per prestazioni e sicurezza, e JAX per il calcolo numerico ad alte prestazioni. Questo trio garantisce che il chatbot operi in modo efficiente, si scaldi efficacemente e serva gli utenti prontamente. Accesso alla Conoscenza in Tempo Reale: Una delle caratteristiche distintive di Grok AI è la sua capacità di attingere a dati in tempo reale attraverso la piattaforma X—precedentemente nota come Twitter. Questa capacità consente all'IA di accedere alle informazioni più recenti, permettendole di fornire risposte e raccomandazioni tempestive che altri modelli di IA potrebbero perdere. Due Modalità di Interazione: Grok AI offre agli utenti la scelta tra “Modalità Divertente” e “Modalità Normale”. La Modalità Divertente consente uno stile di interazione più giocoso e umoristico, mentre la Modalità Normale si concentra sulla fornitura di risposte precise e accurate. Questa versatilità garantisce un'esperienza su misura che soddisfa varie preferenze degli utenti. In sostanza, Grok AI sposa prestazioni con coinvolgimento, creando un'esperienza che è sia arricchente che divertente. Cronologia di Grok AI Il viaggio di Grok AI è segnato da traguardi fondamentali che riflettono le sue fasi di sviluppo e distribuzione: Sviluppo Iniziale: La fase fondamentale di Grok AI si è svolta in circa due mesi, durante i quali sono stati condotti l'addestramento iniziale e il perfezionamento del modello. Rilascio Beta di Grok-2: In un significativo avanzamento, è stata annunciata la beta di Grok-2. Questo rilascio ha introdotto due versioni del chatbot—Grok-2 e Grok-2 mini—ognuna dotata delle capacità per chattare, programmare e ragionare. Accesso Pubblico: Dopo lo sviluppo beta, Grok AI è diventato disponibile per gli utenti della piattaforma X. Coloro che hanno account verificati tramite un numero di telefono e attivi per almeno sette giorni possono accedere a una versione limitata, rendendo la tecnologia disponibile a un pubblico più ampio. Questa cronologia racchiude la crescita sistematica di Grok AI dall'inizio all'impegno pubblico, enfatizzando il suo impegno per il miglioramento continuo e l'interazione con gli utenti. Caratteristiche Chiave di Grok AI Grok AI comprende diverse caratteristiche chiave che contribuiscono alla sua identità innovativa: Integrazione della Conoscenza in Tempo Reale: L'accesso a informazioni attuali e rilevanti differenzia Grok AI da molti modelli statici, consentendo un'esperienza utente coinvolgente e accurata. Stili di Interazione Versatili: Offrendo modalità di interazione distinte, Grok AI soddisfa varie preferenze degli utenti, invitando alla creatività e alla personalizzazione nella conversazione con l'IA. Avanzata Struttura Tecnologica: L'utilizzo di Kubernetes, Rust e JAX fornisce al progetto un solido framework per garantire affidabilità e prestazioni ottimali. Considerazione del Discorso Etico: L'inclusione di una funzione di generazione di immagini mette in mostra lo spirito innovativo del progetto. Tuttavia, solleva anche considerazioni etiche riguardanti il copyright e la rappresentazione rispettosa di figure riconoscibili—una discussione in corso all'interno della comunità AI. Conclusione Come entità pionieristica nel campo dell'IA conversazionale, Grok AI incarna il potenziale per esperienze utente trasformative nell'era digitale. Sviluppato da xAI e guidato dall'approccio visionario di Elon Musk, Grok AI integra conoscenze in tempo reale con capacità di interazione avanzate. Si sforza di spingere i confini di ciò che l'intelligenza artificiale può realizzare, mantenendo un focus su considerazioni etiche e sicurezza degli utenti. Grok AI non solo incarna il progresso tecnologico, ma rappresenta anche un nuovo paradigma conversazionale nel panorama Web3, promettendo di coinvolgere gli utenti con sia conoscenze esperte che interazioni giocose. Man mano che il progetto continua a evolversi, si erge come testimonianza di ciò che l'incrocio tra tecnologia, creatività e interazione simile a quella umana può realizzare.

95 Totale visualizzazioniPubblicato il 2024.12.26Aggiornato il 2024.12.26

Cosa è ERC AI

Euruka Tech: Una Panoramica di $erc ai e delle sue Ambizioni in Web3 Introduzione Nel panorama in rapida evoluzione della tecnologia blockchain e delle applicazioni decentralizzate, nuovi progetti emergono frequentemente, ciascuno con obiettivi e metodologie uniche. Uno di questi progetti è Euruka Tech, che opera nel vasto dominio delle criptovalute e del Web3. L'obiettivo principale di Euruka Tech, in particolare del suo token $erc ai, è presentare soluzioni innovative progettate per sfruttare le crescenti capacità della tecnologia decentralizzata. Questo articolo si propone di fornire una panoramica completa di Euruka Tech, un'esplorazione dei suoi obiettivi, della funzionalità, dell'identità del suo creatore, dei potenziali investitori e della sua importanza nel contesto più ampio del Web3. Cos'è Euruka Tech, $erc ai? Euruka Tech è caratterizzato come un progetto che sfrutta gli strumenti e le funzionalità offerte dall'ambiente Web3, concentrandosi sull'integrazione dell'intelligenza artificiale nelle sue operazioni. Sebbene i dettagli specifici sul framework del progetto siano piuttosto sfuggenti, è progettato per migliorare l'engagement degli utenti e automatizzare i processi nello spazio crypto. Il progetto mira a creare un ecosistema decentralizzato che non solo faciliti le transazioni, ma incorpori anche funzionalità predittive attraverso l'intelligenza artificiale, da cui il nome del suo token, $erc ai. L'obiettivo è fornire una piattaforma intuitiva che faciliti interazioni più intelligenti e un'elaborazione delle transazioni più efficiente all'interno della crescente sfera del Web3. Chi è il Creatore di Euruka Tech, $erc ai? Attualmente, le informazioni riguardanti il creatore o il team fondatore di Euruka Tech rimangono non specificate e piuttosto opache. Questa assenza di dati solleva preoccupazioni, poiché la conoscenza del background del team è spesso essenziale per stabilire credibilità nel settore blockchain. Pertanto, abbiamo classificato queste informazioni come sconosciute fino a quando dettagli concreti non saranno resi disponibili nel dominio pubblico. Chi sono gli Investitori di Euruka Tech, $erc ai? Allo stesso modo, l'identificazione degli investitori o delle organizzazioni di supporto per il progetto Euruka Tech non è prontamente fornita attraverso la ricerca disponibile. Un aspetto cruciale per i potenziali stakeholder o utenti che considerano di impegnarsi con Euruka Tech è la garanzia che deriva da partnership finanziarie consolidate o dal supporto di società di investimento rispettabili. Senza divulgazioni sulle affiliazioni di investimento, è difficile trarre conclusioni complete sulla sicurezza finanziaria o sulla longevità del progetto. In linea con le informazioni trovate, anche questa sezione rimane allo stato di sconosciuto. Come funziona Euruka Tech, $erc ai? Nonostante la mancanza di specifiche tecniche dettagliate per Euruka Tech, è essenziale considerare le sue ambizioni innovative. Il progetto cerca di sfruttare la potenza computazionale dell'intelligenza artificiale per automatizzare e migliorare l'esperienza dell'utente all'interno dell'ambiente delle criptovalute. Integrando l'IA con la tecnologia blockchain, Euruka Tech mira a fornire funzionalità come operazioni automatizzate, valutazioni del rischio e interfacce utente personalizzate. L'essenza innovativa di Euruka Tech risiede nel suo obiettivo di creare una connessione fluida tra gli utenti e le vaste possibilità presentate dalle reti decentralizzate. Attraverso l'utilizzo di algoritmi di apprendimento automatico e IA, mira a ridurre le sfide degli utenti alle prime armi e semplificare le esperienze transazionali all'interno del framework Web3. Questa simbiosi tra IA e blockchain sottolinea l'importanza del token $erc ai, fungendo da ponte tra le interfacce utente tradizionali e le avanzate capacità delle tecnologie decentralizzate. Cronologia di Euruka Tech, $erc ai Sfortunatamente, a causa delle limitate informazioni disponibili riguardo a Euruka Tech, non siamo in grado di presentare una cronologia dettagliata dei principali sviluppi o traguardi nel percorso del progetto. Questa cronologia, tipicamente preziosa per tracciare l'evoluzione di un progetto e comprendere la sua traiettoria di crescita, non è attualmente disponibile. Man mano che le informazioni su eventi notevoli, partnership o aggiunte funzionali diventano evidenti, gli aggiornamenti miglioreranno sicuramente la visibilità di Euruka Tech nella sfera crypto. Chiarimento su Altri Progetti “Eureka” È importante sottolineare che più progetti e aziende condividono una nomenclatura simile con “Eureka.” La ricerca ha identificato iniziative come un agente IA della NVIDIA Research, che si concentra sull'insegnamento ai robot di compiti complessi utilizzando metodi generativi, così come Eureka Labs ed Eureka AI, che migliorano l'esperienza utente nell'istruzione e nell'analisi del servizio clienti, rispettivamente. Tuttavia, questi progetti sono distinti da Euruka Tech e non dovrebbero essere confusi con i suoi obiettivi o funzionalità. Conclusione Euruka Tech, insieme al suo token $erc ai, rappresenta un attore promettente ma attualmente oscuro nel panorama del Web3. Sebbene i dettagli sul suo creatore e sugli investitori rimangano non divulgati, l'ambizione centrale di combinare intelligenza artificiale e tecnologia blockchain si erge come un punto focale di interesse. Gli approcci unici del progetto nel promuovere l'engagement degli utenti attraverso l'automazione avanzata potrebbero distinguerlo mentre l'ecosistema Web3 progredisce. Con l'evoluzione continua del mercato crypto, gli stakeholder dovrebbero tenere d'occhio gli sviluppi riguardanti Euruka Tech, poiché lo sviluppo di innovazioni documentate, partnership o una roadmap definita potrebbe presentare opportunità significative nel prossimo futuro. Così com'è, attendiamo ulteriori approfondimenti sostanziali che potrebbero svelare il potenziale di Euruka Tech e la sua posizione nel competitivo panorama crypto.

105 Totale visualizzazioniPubblicato il 2025.01.02Aggiornato il 2025.01.02

Cosa è DUOLINGO AI

DUOLINGO AI: Integrare l'apprendimento delle lingue con Web3 e innovazione AI In un'era in cui la tecnologia rimodella l'istruzione, l'integrazione dell'intelligenza artificiale (AI) e delle reti blockchain annuncia una nuova frontiera per l'apprendimento delle lingue. Entra in scena DUOLINGO AI e la sua criptovaluta associata, $DUOLINGO AI. Questo progetto aspira a fondere la potenza educativa delle principali piattaforme di apprendimento delle lingue con i benefici della tecnologia decentralizzata Web3. Questo articolo esplora gli aspetti chiave di DUOLINGO AI, esaminando i suoi obiettivi, il framework tecnologico, lo sviluppo storico e il potenziale futuro, mantenendo chiarezza tra la risorsa educativa originale e questa iniziativa indipendente di criptovaluta. Panoramica di DUOLINGO AI Alla sua base, DUOLINGO AI cerca di stabilire un ambiente decentralizzato in cui gli studenti possono guadagnare ricompense crittografiche per il raggiungimento di traguardi educativi nella competenza linguistica. Applicando smart contracts, il progetto mira ad automatizzare i processi di verifica delle competenze e le allocazioni di token, aderendo ai principi di Web3 che enfatizzano la trasparenza e la proprietà da parte degli utenti. Il modello si discosta dagli approcci tradizionali all'acquisizione linguistica, facendo forte affidamento su una struttura di governance guidata dalla comunità, che consente ai detentori di token di suggerire miglioramenti ai contenuti dei corsi e alle distribuzioni delle ricompense. Alcuni degli obiettivi notevoli di DUOLINGO AI includono: Apprendimento Gamificato: Il progetto integra traguardi blockchain e token non fungibili (NFT) per rappresentare i livelli di competenza linguistica, promuovendo la motivazione attraverso ricompense digitali coinvolgenti. Creazione di Contenuti Decentralizzati: Apre opportunità per educatori e appassionati di lingue di contribuire con i propri corsi, facilitando un modello di condivisione dei ricavi che beneficia tutti i collaboratori. Personalizzazione Guidata dall'AI: Utilizzando modelli avanzati di machine learning, DUOLINGO AI personalizza le lezioni per adattarsi ai progressi individuali, simile alle funzionalità adattive presenti nelle piattaforme consolidate. Creatori del Progetto e Governance A partire da aprile 2025, il team dietro $DUOLINGO AI rimane pseudonimo, una pratica comune nel panorama decentralizzato delle criptovalute. Questa anonimato è inteso a promuovere la crescita collettiva e il coinvolgimento degli stakeholder piuttosto che concentrarsi su sviluppatori individuali. Lo smart contract distribuito sulla blockchain di Solana annota l'indirizzo del wallet dello sviluppatore, che segna l'impegno verso la trasparenza riguardo alle transazioni, nonostante l'identità dei creatori sia sconosciuta. Secondo la sua roadmap, DUOLINGO AI mira a evolversi in un'Organizzazione Autonoma Decentralizzata (DAO). Questa struttura di governance consente ai detentori di token di votare su questioni critiche come l'implementazione di funzionalità e le allocazioni del tesoro. Questo modello si allinea con l'etica dell'empowerment della comunità presente in varie applicazioni decentralizzate, enfatizzando l'importanza del processo decisionale collettivo. Investitori e Partnership Strategiche Attualmente, non ci sono investitori istituzionali o capitalisti di rischio identificabili pubblicamente legati a $DUOLINGO AI. Invece, la liquidità del progetto proviene principalmente da scambi decentralizzati (DEX), segnando un netto contrasto con le strategie di finanziamento delle aziende tradizionali di tecnologia educativa. Questo modello di base indica un approccio guidato dalla comunità, riflettendo l'impegno del progetto verso la decentralizzazione. Nel suo whitepaper, DUOLINGO AI menziona la formazione di collaborazioni con “piattaforme educative blockchain” non specificate, mirate ad arricchire la sua offerta di corsi. Sebbene partnership specifiche non siano ancora state divulgate, questi sforzi collaborativi suggeriscono una strategia per mescolare innovazione blockchain con iniziative educative, ampliando l'accesso e il coinvolgimento degli utenti attraverso diverse vie di apprendimento. Architettura Tecnologica Integrazione AI DUOLINGO AI incorpora due componenti principali guidate dall'AI per migliorare la sua offerta educativa: Motore di Apprendimento Adattivo: Questo sofisticato motore apprende dalle interazioni degli utenti, simile ai modelli proprietari delle principali piattaforme educative. Regola dinamicamente la difficoltà delle lezioni per affrontare le sfide specifiche degli studenti, rinforzando le aree deboli attraverso esercizi mirati. Agenti Conversazionali: Utilizzando chatbot alimentati da GPT-4, DUOLINGO AI offre una piattaforma per gli utenti per impegnarsi in conversazioni simulate, promuovendo un'esperienza di apprendimento linguistico più interattiva e pratica. Infrastruttura Blockchain Costruito sulla blockchain di Solana, $DUOLINGO AI utilizza un framework tecnologico completo che include: Smart Contracts per la Verifica delle Competenze: Questa funzionalità assegna automaticamente token agli utenti che superano con successo i test di competenza, rinforzando la struttura di incentivi per risultati di apprendimento genuini. Badge NFT: Questi token digitali significano vari traguardi che gli studenti raggiungono, come completare una sezione del loro corso o padroneggiare competenze specifiche, consentendo loro di scambiare o mostrare digitalmente i loro successi. Governance DAO: I membri della comunità dotati di token possono partecipare alla governance votando su proposte chiave, facilitando una cultura partecipativa che incoraggia l'innovazione nell'offerta di corsi e nelle funzionalità della piattaforma. Cronologia Storica 2022–2023: Concettualizzazione I lavori per DUOLINGO AI iniziano con la creazione di un whitepaper, evidenziando la sinergia tra i progressi dell'AI nell'apprendimento delle lingue e il potenziale decentralizzato della tecnologia blockchain. 2024: Lancio Beta Un lancio beta limitato introduce offerte in lingue popolari, premiando i primi utenti con incentivi in token come parte della strategia di coinvolgimento della comunità del progetto. 2025: Transizione DAO Ad aprile, avviene un lancio completo della mainnet con la circolazione di token, stimolando discussioni nella comunità riguardo a possibili espansioni nelle lingue asiatiche e ad altri sviluppi dei corsi. Sfide e Direzioni Future Ostacoli Tecnici Nonostante i suoi obiettivi ambiziosi, DUOLINGO AI affronta sfide significative. La scalabilità rimane una preoccupazione costante, in particolare nel bilanciare i costi associati all'elaborazione dell'AI e nel mantenere una rete decentralizzata reattiva. Inoltre, garantire la creazione e la moderazione di contenuti di qualità in un'offerta decentralizzata presenta complessità nel mantenere standard educativi. Opportunità Strategiche Guardando al futuro, DUOLINGO AI ha il potenziale per sfruttare partnership di micro-credentialing con istituzioni accademiche, fornendo validazioni verificate dalla blockchain delle competenze linguistiche. Inoltre, l'espansione cross-chain potrebbe consentire al progetto di attingere a basi utenti più ampie e a ulteriori ecosistemi blockchain, migliorando la sua interoperabilità e portata. Conclusione DUOLINGO AI rappresenta una fusione innovativa di intelligenza artificiale e tecnologia blockchain, presentando un'alternativa focalizzata sulla comunità ai sistemi tradizionali di apprendimento delle lingue. Sebbene il suo sviluppo pseudonimo e il modello economico emergente comportino alcuni rischi, l'impegno del progetto verso l'apprendimento gamificato, l'istruzione personalizzata e la governance decentralizzata illumina un percorso per la tecnologia educativa nel regno di Web3. Man mano che l'AI continua a progredire e l'ecosistema blockchain evolve, iniziative come DUOLINGO AI potrebbero ridefinire il modo in cui gli utenti interagiscono con l'istruzione linguistica, potenziando le comunità e premiando il coinvolgimento attraverso meccanismi di apprendimento innovativi.

89 Totale visualizzazioniPubblicato il 2025.04.11Aggiornato il 2025.04.11

Discussioni

Benvenuto nella Community HTX. Qui puoi rimanere informato sugli ultimi sviluppi della piattaforma e accedere ad approfondimenti esperti sul mercato. Le opinioni degli utenti sul prezzo di AI AI sono presentate come di seguito.

活动图片