a16z: 11 Intersection Scenarios of AI and Cryptocurrency

marsbitPublicado em 2025-12-17Última atualização em 2025-12-17

Resumo

The intersection of AI and crypto is reshaping the internet’s economic and structural foundations. As AI drives centralization, crypto offers decentralized, user-owned, and trust-minimized countermeasures. Key convergence areas include: 1. **Persistent Data & Context**: Blockchain enables AI to store and share user context across platforms, improving personalization and interoperability. 2. **Universal Agent Identity**: A portable, blockchain-based identity system allows AI agents to operate across ecosystems with built-in payment and reputation mechanisms. 3. **Proof of Personhood**: Decentralized identity protocols (e.g., Worldcoin) help distinguish humans from AI bots, ensuring authentic interactions. 4. **DePIN for AI**: Decentralized physical infrastructure networks democratize access to compute and energy resources for AI development. 5. **Agent-to-Agent Infrastructure**: Blockchain enables secure, interoperable interactions and payments between AI agents. 6. **Synchronizing “Vibe-Coded” Software**: Crypto provides a shared, incentivized layer to maintain compatibility across AI-generated software. 7. **Micro-Payments & Revenue Sharing**: Blockchain facilitates tiny, automated payments to content creators when AI uses their data. 8. **IP Registration & Provenance**: On-chain systems enable transparent IP ownership, licensing, and derivative use for AI-generated content. 9. **Compensated Web Crawling**: Crypto allows AI crawlers to pay websites for data access, while hu...

The economic structure of the internet is changing. As open networks gradually collapse into a "prompt bar," we are forced to ponder: will AI bring about a more open internet, or will it lead us into a maze constructed by new types of paywalls? And who will control the future internet—large centralized companies, or broad user communities?

This is precisely where encryption technology comes into play. We have discussed the intersection of AI and encryption technology many times in the past, but in short, blockchain is a way to redesign internet services and network architecture, enabling the construction of decentralized, trust-neutral, and user-"ownable" systems. By reshaping the economic incentives behind today's systems, blockchain provides a counterbalance to the increasingly centralized trend in AI systems, thereby promoting a more open and resilient internet.

The idea that "encryption technology can help build better AI systems, and vice versa" is not new—but it has long lacked a clear definition. Some intersection areas (such as how to verify "human identity" in the context of the proliferation of low-cost AI systems) have already attracted a large number of developers and users. However, other application scenarios may take years or even decades to materialize. Therefore, this article shares 11 intersection application scenarios of AI and encryption technology, hoping to initiate more industry discussions: which are feasible, which challenges remain to be solved, and how they might evolve in the future.

These scenarios are all based on technologies currently under development—from processing large volumes of micropayments to ensuring that humans retain ownership in their future relationship with AI.

1. Introducing Persistent Data and Context in AI Interactions

Scott Duke Kominers: Generative AI relies on data at its core, but in many application scenarios, "context"—that is, the state and background information related to the interaction—is often as important as the data itself, or even more critical.

Ideally, whether it's an agent, an LLM interface, or other types of AI applications, they should be able to remember a large amount of personalized information, including the types of projects you are advancing, your communication habits, preferred programming languages, etc. But in reality, users often have to repeatedly rebuild this context—not only when starting a new session within the same application, such as opening a new ChatGPT or Claude window, but even more so when switching between different AI systems.

Currently, the context in one generative AI application is almost impossible to migrate to another application.

With blockchain, AI systems can store key contextual elements in the form of persistent digital assets, allowing them to be loaded at the beginning of a session and seamlessly migrated across different AI platforms. Moreover, since "forward compatibility" and "interoperability commitments" are core features of blockchain protocols, blockchain may be the only technical path that systematically solves this problem.

An intuitive application scenario is in AI-led games and media, where user preferences (such as difficulty, key layout, etc.) can persist across games and environments. But what is truly high-value is knowledge-based application scenarios—where AI needs to understand the user's knowledge system, learning style, and capabilities; and more specialized application scenarios, such as programming assistance. Although some companies have already built customized AI tools with "global context" for their own businesses, this context still cannot be effectively migrated between the different AI systems used within the organization.

Various organizations are only just beginning to truly realize this problem, and the closest thing to a general solution currently is custom bots with fixed, persistent contexts. However, context portability between users within platforms is gradually emerging off-chain; for example, on the Poe platform, users can rent out the custom bots they create to other users.

If such activities are migrated on-chain, then the AI systems we interact with will be able to share a contextual layer composed of key elements of all our digital behaviors. AI will be able to instantly understand our preferences, thereby better fine-tuning and optimizing the experience. Conversely, mechanisms similar to on-chain intellectual property registration systems, if they allow AI to reference on-chain persistent contexts, can give rise to new and more complete market interaction models around prompts and information modules—for example, users can directly monetize their professional capabilities through licensing while maintaining data self-management.

Of course, as context sharing capabilities improve, a large number of new use cases and possibilities that are currently unforeseeable will also emerge.

2. A Universal Identity System for Agents

Sam Broner: Identity—the standardized record of "who or what" an object is—is the underlying infrastructure supporting today's digital discovery, aggregation, and payment systems. But because platforms enclose this "underlying plumbing" within their systems, users typically only experience the identity system within a finished product interface. For example, Amazon assigns identifiers to products (such as ASIN or FNSKU), integrates and displays products in a unified interface, and helps users complete discovery and payment; Facebook is similar: user identity determines their news feed content and forms the basis for discovering various content within the application, including Marketplace product listings, organic content, and ad placements.

With the rapid evolution of AI Agents, this landscape is about to change. More and more companies are using agents for customer service, logistics, payment, and other scenarios. Their platforms will no longer be traditional "single-interface applications" but will be distributed across multiple channels and platforms, continuously accumulating deep context, and performing more tasks on behalf of users. But if an agent's identity is only tied to a single platform or a single market, it will be difficult to use in other critical environments (such as email threads, Slack channels, or inside other products).

Therefore, agents need a unified, portable "digital passport." Without it, it is impossible to confirm how to pay the agent, verify its version, query its capabilities, identify who it is acting on behalf of, or track its reputation in cross-application and cross-platform environments. The agent's identity system must simultaneously function as a wallet, API registry, change log, and social reputation proof, enabling any interface (whether email, Slack, or other agents) to parse and communicate with it in a consistent manner.

Without this shared "identity primitive," every system integration would need to rebuild this plumbing from scratch; content discovery would remain in a state of temporary patching; and users would continuously lose their critical context when switching between different channels and platforms.

We now have the opportunity to design agent infrastructure from "first principles." So the question is: how to build an identity layer that is richer than DNS records and possesses trust neutrality? Instead of re-creating monolithic platforms that bundle identity, discovery, aggregation, payment, and other functions together, let agents be able to autonomously receive payments, publicly list their capabilities, and exist in multiple ecosystems without worrying about being locked into a single platform.

This is precisely where the intersection of encryption technology and AI can play a role—blockchain networks provide permissionless composability, enabling developers to create more powerful agents and a more user-friendly experience.

Overall, vertically integrated solutions like Facebook and Amazon currently offer a better user experience—the reason being that one of the complexities of building excellent products is to ensure all components work together naturally from the top down. However, the cost of this convenience is becoming increasingly high, especially in the context of declining software costs for building, aggregating, promoting, commercializing, and distributing agents, and the expanding reach of agent applications.

Reaching the user experience of vertically integrated platforms still requires significant effort, but once a trust-neutral agent identity layer is built, entrepreneurs can truly own their passport. This will also drive widespread experimentation and innovation in distribution models and interaction design.

3. "Proof of Personhood" (PoP) for the Future

Jay Drain Jr. and Scott Duke Kominers: As AI becomes more prevalent—whether it's robots and agents running in various web interactions, or deepfakes and social media manipulation—it is becoming increasingly difficult to determine whether the objects we interact with online are real humans. This erosion of trust is not a future worry but a current reality. From comment spam on X to automated accounts on dating apps, the line between real and fake is becoming blurred. In such an environment, "Proof of Personhood" is gradually becoming key infrastructure for the internet.

One way to verify "you are human" is to use a digital identity, including centralized identity authentication systems used by agencies like TSA. Digital ID encompasses all information a user can use to prove their identity—username, PIN, password, and proofs issued by third parties (such as nationality, credibility, or credit status), etc. The value of decentralization here is very clear: when identity data is stored in centralized systems, the issuer can revoke access, charge fees, or even assist in monitoring. Decentralization subverts this structure: users, not the platform's gatekeepers, control their own identity, making it more secure and censorship-resistant.

Unlike traditional identity systems, decentralized Proof of Personhood mechanisms (such as Worldcoin's World's Proof of Human) allow users to manage their identity data autonomously and verify that they are indeed "human" in a privacy-protecting, trust-neutral manner. Similar to a driver's license—which can be used in any scenario regardless of when and where it was issued—decentralized PoP can serve as a universal underlying basic module, reusable on any platform, including those that do not yet exist. In other words, blockchain-based PoP has "forward compatibility" because it provides:

Portability: The protocol is an open standard that any platform can integrate. Decentralized PoP can be managed by public infrastructure and is entirely user-controlled. This means PoP is inherently portable, and any platform, now or in the future, can be compatible with it.

Permissionless Accessibility: Platforms can independently choose whether to support a particular PoP identity without going through a centralized API approval process that may set discriminatory restrictions on different use cases.

The core challenge in this field is "adoption." Currently, there is no large-scale, real-world application of "Proof of Personhood" (PoP), but we expect that once the number of users reaches a critical mass, several early partners emerge, and a "killer app" that drives user demand appears, the adoption of PoP will significantly increase. Every application that adopts a certain digital ID standard enhances the value of that ID type to users; this in turn drives more users to obtain that ID; and a larger user base conversely increases the attractiveness for applications to integrate that ID standard to verify "humanness." (Furthermore, because on-chain IDs are designed to be interoperable, this network effect can spread rapidly.)

We have already seen mainstream consumer applications in gaming, dating, social media, etc., announce partnerships with World ID to ensure that when users are gaming, chatting, or transacting, they are indeed interacting with real humans—or even the specific individuals they expect. At the same time, new identity protocols have emerged this year, such as the Solana Attestation Service (SAS). Although SAS itself is not a PoP issuer, it allows users to privately associate off-chain data (such as KYC results required for compliance, investor certification qualifications, etc.) with a Solana wallet, thereby building a user's decentralized identity. These signs all indicate that the tipping point for decentralized PoP may not be far away.

The significance of Proof of Personhood goes far beyond "stopping bots." It aims to build a clear boundary between AI agents and human networks, enabling users and applications to distinguish between the different interactions of "humans and machines," thereby creating conditions for a better, safer, and more authentic digital experience.

4. Decentralized Physical Infrastructure (DePIN) for AI

Guy Wuollet: Although AI is a digital service, its development is increasingly constrained by physical infrastructure. Decentralized Physical Infrastructure Networks (DePIN)—a new model for building and operating real-world systems—have the potential to democratize the computing infrastructure that supports AI innovation, making it cheaper, more resilient, and more censorship-resistant.

Why? The two main bottlenecks for AI development are energy and chip access. Decentralized energy systems can provide more abundant power, and developers are using DePIN to integrate idle chips from gaming PCs, data centers, and other sources. These computing devices can together form a permissionless computing market, thereby creating a level playing field for building new AI products.

Other application scenarios include: distributed training and fine-tuning of large language models (LLMs), and building distributed inference networks (model inference). Decentralized training and inference can significantly reduce costs because they utilize computing resources that would otherwise be idle. At the same time, such architectures have natural censorship resistance, ensuring that developers are not "taken down" or restricted from access due to reliance on hyperscalers (i.e., centralized cloud infrastructure providers that offer large-scale scalable computing resources).

The concentration of AI models in the hands of a few companies has been a long-term concern; decentralized networks can help build AI systems that are cheaper, more censorship-resistant, and more scalable.

5. Establishing Infrastructure and Security Mechanisms for Interactions Between AI Agents, End Service Providers, and Users

Scott Duke Kominers: As AI tools become increasingly capable of handling complex tasks and executing multi-level interaction chains, AI will increasingly need to collaborate independently with other AIs without direct human control.

For example, an AI agent may need to request specific data for a certain computation, or need to call upon other agents with specialized capabilities to perform tasks—such as having a statistical analysis agent responsible for building and running model simulations, or mobilizing an image generation agent to assist in creating marketing materials. AI agents will also create huge value in end-to-end transaction execution, such as completely replacing users in completing a transaction process: finding and booking flights based on preferences, or automatically discovering and purchasing new books that match user tastes.

Currently, there is no "generalized agent-to-agent market." Such cross-agent requests can usually only be achieved through explicit API calls, or are limited to certain closed AI agent ecosystems as internal functions.

More broadly, most AI agents today operate in isolated ecosystems: APIs are relatively closed, and there is a lack of unified architectural standards. Blockchain technology can help protocols establish open standards, which is crucial for short-term adoption; in the long run, this also helps achieve forward compatibility: as new types of agents continue to appear, they can all connect to the same underlying network. Because blockchains are interoperable, open-source, decentralized, and generally easier to upgrade in architecture, they are more adaptable to changes brought about by future AI innovation.

Currently, several companies are building on-chain infrastructure for agent interactions. Take Halliday, for example, which recently launched a protocol that provides a standardized cross-chain architecture for AI workflows and interactions, while incorporating protection mechanisms at the protocol level to ensure that AI does not act beyond user intent. On the other hand, projects like Catena, Skyfire, and Nevermind use blockchain to support automatic settlement between agents, enabling AI-to-AI payments without any human intervention. Similar systems are constantly emerging, and Coinbase has begun to provide infrastructure support for such development.

6. Keeping "Vibe Coding" Applications in Sync

Sam Broner and Scott Duke Kominers: The generative AI revolution has made building software easier than ever before. Coding speed has increased by orders of magnitude, and more importantly, coding can be done directly through natural language, enabling inexperienced developers to replicate existing programs or even build new applications from scratch.

However, while AI-assisted coding creates new opportunities, it also brings a lot of "entropy" within and between programs. So-called "vibe coding" abstracts away the complex dependencies behind the software—but because of this, when the underlying source code repository or inputs change, the program may expose risks in terms of functionality and security. At the same time, when people use AI to create highly personalized applications and workflows, interfacing with others' systems becomes more difficult. In fact, even if two vibe-coded programs perform almost identical tasks, their operating logic and output structure may be completely different.

Traditionally, the work of ensuring consistency and compatibility was undertaken by file formats, operating systems, and later, shared software and API integrations. But in a world where software evolves, morphs, and branches in real-time, the standardization layer must have: broad accessibility, continuous upgradability, and also user trust. Furthermore, AI alone cannot solve the incentive problem—that is, how to incentivize developers to build and maintain these inter-system links.

Blockchain can solve both of these problems simultaneously; it can provide protocolized synchronization layers that are embedded in user-customized software builds and can dynamically update as the environment changes to ensure cross-system compatibility.

In the past, large enterprises might have paid millions of dollars to system integrators like Deloitte to customize a Salesforce instance. Today, an engineer might only need a weekend to build a custom interface for "viewing sales data." But as the number of customized software continues to grow, developers will need help to ensure these applications remain synchronized and available.

This is similar to the development model of today's open-source software libraries, but the difference is: the synchronization layer does not rely on periodic version releases but is continuously updated—and also comes with incentives. And both of these can be more easily achieved through encryption technology. Like other blockchain-based protocols, shared ownership of the synchronization layer can incentivize all parties to continuously invest resources in improvements. Developers, users (and their AI agents), and other users can all be incentivized for introducing, using, or iterating on new features and integration solutions.

Conversely, shared ownership also gives all users a stake in the overall success of the protocol, thereby forming a mechanism to suppress behavioral deviations. Just as Microsoft would not easily破坏 the .docx file format standard because it would cause widespread negative impact on its users and brand; co-owners of the synchronization layer would also suffer from their own interests and would be reluctant to introduce clumsy or malicious code into the protocol.

As with all previous software standardization architectures, there is also the potential for powerful network effects here. As AI-generated software ushers in a "Cambrian explosion," the number of diverse, heterogeneous systems that need to communicate with each other will grow exponentially. In short: vibe coding cannot stay in sync by vibe alone; encryption technology is the answer.

7. Micropayment Systems Supporting Revenue Sharing

Liz Harkavy: AI agents and tools like ChatGPT, Claude, and Copilot provide people with a more convenient way to access information in the digital world. But for better or worse, they are also shaking the economic structure of the open internet. This trend is already evident—for example, as students increasingly use AI tools, educational platforms are experiencing significant traffic declines; at the same time, several US media outlets are suing OpenAI for copyright infringement. If the incentive system cannot be readjusted, we may see the internet become further enclosed, with more paywalls, while content creators continue to decrease.

Policy measures certainly always exist, but while judicial processes are advancing, some technical solutions are also emerging. Among the most promising (and technically challenging) solutions is embedding a "revenue sharing mechanism" into the underlying architecture of the internet. When an AI-driven operation ultimately leads to a sale, the content creator who provided the source of information for that decision should receive a share of the revenue. The affiliate marketing ecosystem already does similar attribution tracking and revenue sharing; more advanced systems can automatically track all contributors along the entire information chain and reward them. Blockchain can clearly play a key role in tracking the "chain of information sources."

However, to achieve such a system, new infrastructure is needed—especially: micropayment systems capable of processing very small amounts between multiple sources; attribution protocols capable of fairly assessing the value of different contributions; and governance models that ensure transparency and fairness.

Many existing blockchain tools show potential, such as various rollups, L2 networks, AI-native financial institution Catena Labs, and financial infrastructure protocol 0xSplits, all of which can achieve near-zero-cost transactions and more granular payment splits.

Blockchain can enable advanced payment systems led by agents through various mechanisms:

Nanopayments: Can be split among multiple data providers, enabling a single user interaction to automatically trigger micro-payments to all contributing sources, executed by smart contracts.

Smart Contracts: Can automatically trigger enforceable "post-payment" after a transaction is completed, providing transparent, traceable compensation to content sources that influenced the purchasing decision.

Programmable Payment Splits: Enable revenue distribution to be enforced by code rather than relying on centralized institutions to decide, thereby establishing trustless financial relationships between automated agents.

As these emerging technologies continue to mature, they will build a new economic model for media, capturing the entire value creation chain from creators, to platforms, to users.

8. Using Blockchain as a Registration System for Intellectual Property and Provenance

Scott Duke Kominers: The emergence of generative AI has made it urgent to establish efficient, programmable mechanisms for intellectual property (IP) registration and tracking—both for the purpose of ensuring accurate provenance and for supporting new business models around access, sharing, and derivative creation of IP. Existing IP frameworks rely on costly intermediaries and ex-post enforcement mechanisms, which are clearly inadequate in an era where AI can instantly consume content and generate variants with a single click.

What we need is an open, public registration system that provides creators with clear proof of ownership, with low barriers to entry and high efficiency—while also allowing AI and other web applications to interact with it directly. Blockchain is well-suited for this role: it allows creators to register IP without relying on intermediaries and provides tamper-proof provenance proof; at the same time, it also enables third-party applications to easily identify, authorize, and interact with these IP assets.

Of course, people remain cautious about the overall concept of "whether technology can truly protect intellectual property." After all, the first two eras of the internet—and even the current AI revolution—have often been associated with a decline in IP protection. One reason is that many existing IP business models emphasize "excluding derivative works" rather than incentivizing and monetizing derivative creation. Programmable IP infrastructure can not only allow creators, franchisees, and brands to clearly establish their IP ownership in digital space but also give rise to new business models centered on "sharing IP for generative AI and digital applications." In a sense, it transforms one of the threats of generative AI to creative work into a new opportunity.

In the early stages of NFTs, we have seen creators experimenting with new models, such as building brand network effects through CC0 on Ethereum to achieve value沉淀. Recently, we have seen infrastructure providers begin to build standardized, composable IP registration and licensing protocols, and even launch specialized blockchains (like Story Protocol). Some artists have begun using protocols like Alias, Neura, and Titles to license their styles and works to support creative remixing. Meanwhile, Incention's sci-fi series Emergence allows fans to co-create universes and character settings, with each creative contribution recorded on Story's on-chain registration system.

9. Web Crawlers That Compensate Content Creators

Carra Wu: The AI agents with the most product-market fit today are not those for programming or entertainment, but web crawlers—they can autonomously browse the internet, collect data, and make judgments about which links to follow.

According to some estimates, nearly half of today's internet traffic already comes from non-human sources. Bots often ignore robots.txt files—a standard that should tell automated crawlers whether a website allows their access, but has almost no binding force in reality—and use the scraped data to strengthen the core moats of the world's largest tech companies. Worse still, websites ultimately have to bear the cost of these "uninvited guests," expending bandwidth and CPU resources to deal with the endless stream of anonymous crawlers. In response, companies like Cloudflare and other CDNs (Content Delivery Networks) provide blocking services. All of this constitutes a "patchwork" system that should not exist.

We have pointed out before that the original contract of the internet—the economic synergy between content creators creating content and platforms responsible for distributing content—is gradually collapsing. This trend is already reflected in the data: over the past twelve months, website operators have begun blocking AI-oriented crawlers on a large scale. In July 2024, only about 9% of the world's top 10,000 websites blocked AI crawlers, but now that proportion has reached 37%. As more website operators' technology matures and user dissatisfaction increases, this proportion will continue to rise.

So, what if instead of paying CDNs to "block all" suspected robots, we try a middle path? That is, instead of AI crawlers "free-riding," they pay for the right to access data. Here, blockchain can play a role: in this vision, each web crawler agent holds a certain amount of crypto assets and negotiates on-chain with the website's "gatekeeper agent" or paywall protocol through the x402 protocol. (Of course, the challenge is that robots.txt, the "Robots Exclusion Standard," has been deeply ingrained in the operating models of internet companies since the 1990s. Changing this requires large-scale collaboration or support from CDNs like Cloudflare.)

At the same time, human users can prove they are real people through World ID (see above) and gain free access. In this way, content creators and website operators can be compensated at the moment their data is collected by AI, while human users can still enjoy an internet with free flow of information.

10. Privacy-Preserving Advertising That Is Both Accurate and Not "Creepy"

Matt Gleason: AI has already begun to influence our online shopping habits, but what if the ads we see every day could truly be "useful"? People dislike ads for many reasons: ads irrelevant to them are pure noise; at the same time, not all "personalization" is good. Highly targeted advertising driven by large amounts of consumer data can feel invasive; other applications try to monetize through "forced viewing of ads" (such as unskippable ads on streaming platforms or in game levels).

Encryption technology can help improve these problems, providing an opportunity to reimagine the advertising system. When AI agents are combined with blockchain, they can customize ads based on user-actively-set preferences, making ads neither irrelevant nor overly "weird." More importantly, in this process, user data is not exposed, and users willing to share data or interact with ads can be compensated.

Achieving this model requires several technical foundations:

Low-fee digital payment systems: To compensate users for ad interactions (viewing, clicking, converting), businesses need to send a large number of small payments. To achieve scale, this requires a system that is high-speed, high-throughput, and has almost zero fees.

Privacy-preserving data verification: AI agents need to verify whether consumers meet certain demographic characteristics. Zero-knowledge proofs (ZKPs) can perform such verification without revealing specific private information.

New incentive models: If the internet adopts a monetization method based on micropayments (e.g., < $0.05 per interaction), users can actively choose to watch ads to receive compensation, thereby transforming the current "data extraction model" into a "user participation model."

For decades, people have been trying to make ads more "relevant"—online and offline alike. And re-examining advertising from the perspective of encryption technology and AI can truly make ads useful, controllable, and optional. For builders and advertisers, this means a more sustainable and consistent incentive structure; for users, it provides richer ways to discover information and explore the digital world.

Ultimately, this will not only make ad inventory more valuable but may also shake up the deeply entrenched, "extractive" advertising economic model, replacing it with a more human-centric system: where users are no longer "the product being sold" but true participants.

11. AI Companions "Owned and Controlled" by Users

Guy Wuollet: Today, many people spend more time on their devices than in offline communication, and this online time is increasingly spent interacting with AI models or AI-curated content. These models already provide a form of "companionship"—whether for entertainment, information acquisition, satisfying niche interests, or as educational tools for children. It is easy to imagine that in the near future, AI companions for education, healthcare, legal advice, and even daily emotional companionship will become a primary mode of interaction for humans.

Future AI companions will have infinite patience and be deeply customized for the individual and their usage scenarios. They are not just assistants or "robot servants" but may become relationship objects that users highly value. Therefore, the question arises: who will own and control these relationships—the users, or the companies and other intermediaries? If you have been concerned about the content curation and censorship issues of social media over the past decade, this problem will become exponentially more complex and more personal in the future.

The view that "blockchain and other censorship-resistant hosting platforms may be the best path to building uncensorable, user-controllable AI" has been充分 discussed. Although users can run local models themselves and buy GPUs, for most people, this is either too expensive or too technically demanding.

Although the full popularization of AI companions is still some distance away, related technologies are maturing rapidly: text chat AIs are already extremely natural and realistic; visual avatars are continuously improving; blockchain performance is持续改善. To make "uncensorable AI companions" truly easy to use, we need to rely on better crypto application user experience (UX). Fortunately, wallets like Phantom have made blockchain interactions simpler, and embedded wallets, Passkey, and account abstraction technologies allow users to easily achieve self-custody without having to manage seed phrases themselves. At the same time, high-throughput, trustless computing systems based on optimistic and ZK co-processors will also enable us to establish meaningful and sustainable long-term relationships with digital companions.

In the near future, the focus of public discussion will shift from "when will realistic digital companions and virtual avatars appear" to "who will control them, and how will they be controlled."

Perguntas relacionadas

QWhat are the 11 intersection scenarios between AI and cryptocurrency discussed in the a16z article?

AThe 11 scenarios are: 1. Persisting data and context in AI interactions, 2. Universal identity for AI agents, 3. Proof of Personhood (PoP), 4. Decentralized Physical Infrastructure (DePIN) for AI, 5. Infrastructure and security for AI agent interactions, 6. Synchronizing 'vibe-coded' applications, 7. Micropayments for revenue sharing, 8. Blockchain as an IP and provenance registry, 9. Web crawlers that compensate creators, 10. Privacy-preserving advertising, and 11. User-owned and controlled AI companions.

QHow can blockchain technology help in creating a universal identity system for AI agents?

ABlockchain can provide a unified, portable 'digital passport' for AI agents, functioning as a wallet, API registry, change log, and social reputation proof. This allows any interface to parse and communicate with the agent consistently across different platforms and ecosystems, preventing lock-in and enabling permissionless composability for better user experiences and innovation.

QWhat is 'Proof of Personhood' (PoP) and why is it important in the age of AI?

AProof of Personhood (PoP) is a decentralized mechanism to verify that an entity is a real human, not an AI bot. It is crucial because AI proliferation makes it hard to distinguish humans from machines online, eroding trust. PoP, like Worldcoin's World ID, offers portability, permissionless accessibility, and privacy, serving as a foundational primitive for secure, authentic digital interactions across various applications.

QHow can micropayments and blockchain support revenue sharing for content creators?

ABlockchain enables micropayment systems that can track and split tiny payments among multiple content contributors automatically via smart contracts. This ensures creators are compensated when AI-driven actions lead to sales, using infrastructure like rollups, L2 networks, and protocols such as Catena Labs and 0xSplits for low-cost, granular payments, thus realigning incentives in the digital economy.

QWhat role does blockchain play in ensuring user ownership and control of AI companions?

ABlockchain provides anti-censorship, user-controlled hosting platforms for AI companions, ensuring that relationships with AI are owned by users, not corporations. Technologies like embedded wallets, passkeys, account abstraction, and high-throughput compute systems (e.g., optimistic and ZK coprocessors) make self-custody accessible, allowing sustainable, long-term digital relationships without central control.

Leituras Relacionadas

Gemini AI Makes a Totally Crazy Prediction for XRP in 2026

While the crypto market seeks a new breath of life, a new prediction from Gemini AI regarding XRP's price by 2026 is generating significant buzz. The AI model projects that XRP could reach a price range of **$8 to $12** in a plausible, though not guaranteed, bullish scenario. This ambitious forecast is based on market cycles, evolving regulations, and growing institutional adoption. The article notes that XRP, designed for fast and low-cost cross-border payments, is gradually moving past its prolonged legal battle with the SEC. Ripple continues to solidify its position by securing banking partnerships, particularly in Asia and the Middle East. Technically, XRP has been trading in a prolonged period of low volatility, a condition that often precedes significant price movements. The prediction hinges on XRP consolidating its role as a key cross-border payment infrastructure within a bullish crypto market and a clear regulatory framework. However, Gemini AI also presents a more conservative scenario where XRP could remain below $3 for several more years, acknowledging the high dependency on external factors like politics, competition, and overall market dynamics. Ultimately, the prediction is notable not just for the high figures but for reframing XRP as a potential building block of the global financial infrastructure, rather than merely a speculative asset. It is an optimistic yet not absurd forecast, making XRP a divisive but intriguing asset.

bitcoinistHá 12m

Gemini AI Makes a Totally Crazy Prediction for XRP in 2026

bitcoinistHá 12m

Trading

Spot
Futuros

Artigos em Destaque

O que é GROK AI

Grok AI: Revolucionar a Tecnologia Conversacional na Era Web3 Introdução No panorama em rápida evolução da inteligência artificial, a Grok AI destaca-se como um projeto notável que liga os domínios da tecnologia avançada e da interação com o utilizador. Desenvolvida pela xAI, uma empresa liderada pelo renomado empreendedor Elon Musk, a Grok AI procura redefinir a forma como interagimos com a inteligência artificial. À medida que o movimento Web3 continua a florescer, a Grok AI visa aproveitar o poder da IA conversacional para responder a consultas complexas, proporcionando aos utilizadores uma experiência que é não apenas informativa, mas também divertida. O que é a Grok AI? A Grok AI é um sofisticado chatbot de IA conversacional projetado para interagir com os utilizadores de forma dinâmica. Ao contrário de muitos sistemas de IA tradicionais, a Grok AI abraça uma gama mais ampla de perguntas, incluindo aquelas tipicamente consideradas inadequadas ou fora das respostas padrão. Os principais objetivos do projeto incluem: Raciocínio Fiável: A Grok AI enfatiza o raciocínio de senso comum para fornecer respostas lógicas com base na compreensão contextual. Supervisão Escalável: A integração de assistência de ferramentas garante que as interações dos utilizadores sejam monitorizadas e otimizadas para qualidade. Verificação Formal: A segurança é primordial; a Grok AI incorpora métodos de verificação formal para aumentar a fiabilidade das suas saídas. Compreensão de Longo Contexto: O modelo de IA destaca-se na retenção e recordação de um extenso histórico de conversas, facilitando discussões significativas e contextualizadas. Robustez Adversarial: Ao focar na melhoria das suas defesas contra entradas manipuladas ou maliciosas, a Grok AI visa manter a integridade das interações dos utilizadores. Em essência, a Grok AI não é apenas um dispositivo de recuperação de informações; é um parceiro conversacional imersivo que incentiva um diálogo dinâmico. Criador da Grok AI A mente por trás da Grok AI não é outra senão Elon Musk, um indivíduo sinónimo de inovação em vários campos, incluindo automóvel, viagens espaciais e tecnologia. Sob a égide da xAI, uma empresa focada em avançar a tecnologia de IA de maneiras benéficas, a visão de Musk visa reformular a compreensão das interações com a IA. A liderança e a ética fundacional são profundamente influenciadas pelo compromisso de Musk em ultrapassar os limites tecnológicos. Investidores da Grok AI Embora os detalhes específicos sobre os investidores que apoiam a Grok AI permaneçam limitados, é reconhecido publicamente que a xAI, a incubadora do projeto, é fundada e apoiada principalmente pelo próprio Elon Musk. As anteriores empreitadas e participações de Musk fornecem um forte apoio, reforçando ainda mais a credibilidade e o potencial de crescimento da Grok AI. No entanto, até agora, informações sobre fundações ou organizações de investimento adicionais que apoiam a Grok AI não estão prontamente acessíveis, marcando uma área para exploração futura potencial. Como Funciona a Grok AI? A mecânica operacional da Grok AI é tão inovadora quanto a sua estrutura conceptual. O projeto integra várias tecnologias de ponta que facilitam as suas funcionalidades únicas: Infraestrutura Robusta: A Grok AI é construída utilizando Kubernetes para orquestração de contêineres, Rust para desempenho e segurança, e JAX para computação numérica de alto desempenho. Este trio assegura que o chatbot opere de forma eficiente, escale eficazmente e sirva os utilizadores prontamente. Acesso a Conhecimento em Tempo Real: Uma das características distintivas da Grok AI é a sua capacidade de aceder a dados em tempo real através da plataforma X—anteriormente conhecida como Twitter. Esta capacidade concede à IA acesso às informações mais recentes, permitindo-lhe fornecer respostas e recomendações oportunas que outros modelos de IA poderiam perder. Dois Modos de Interação: A Grok AI oferece aos utilizadores a escolha entre “Modo Divertido” e “Modo Regular”. O Modo Divertido permite um estilo de interação mais lúdico e humorístico, enquanto o Modo Regular foca em fornecer respostas precisas e exatas. Esta versatilidade assegura uma experiência adaptada que atende a várias preferências dos utilizadores. Em essência, a Grok AI combina desempenho com envolvimento, criando uma experiência que é tanto enriquecedora quanto divertida. Cronologia da Grok AI A jornada da Grok AI é marcada por marcos fundamentais que refletem as suas fases de desenvolvimento e implementação: Desenvolvimento Inicial: A fase fundamental da Grok AI ocorreu ao longo de aproximadamente dois meses, durante os quais o treinamento inicial e o ajuste do modelo foram realizados. Lançamento Beta do Grok-2: Numa evolução significativa, o beta do Grok-2 foi anunciado. Este lançamento introduziu duas versões do chatbot—Grok-2 e Grok-2 mini—cada uma equipada com capacidades para conversar, programar e raciocinar. Acesso Público: Após o seu desenvolvimento beta, a Grok AI tornou-se disponível para os utilizadores da plataforma X. Aqueles com contas verificadas por um número de telefone e ativas há pelo menos sete dias podem aceder a uma versão limitada, tornando a tecnologia disponível para um público mais amplo. Esta cronologia encapsula o crescimento sistemático da Grok AI desde a sua concepção até ao envolvimento público, enfatizando o seu compromisso com a melhoria contínua e a interação com o utilizador. Principais Características da Grok AI A Grok AI abrange várias características principais que contribuem para a sua identidade inovadora: Integração de Conhecimento em Tempo Real: O acesso a informações atuais e relevantes diferencia a Grok AI de muitos modelos estáticos, permitindo uma experiência de utilizador envolvente e precisa. Estilos de Interação Versáteis: Ao oferecer modos de interação distintos, a Grok AI atende a várias preferências dos utilizadores, convidando à criatividade e personalização na conversa com a IA. Base Tecnológica Avançada: A utilização de Kubernetes, Rust e JAX fornece ao projeto uma estrutura sólida para garantir fiabilidade e desempenho ótimo. Consideração de Discurso Ético: A inclusão de uma função de geração de imagens demonstra o espírito inovador do projeto. No entanto, também levanta considerações éticas em torno dos direitos autorais e da representação respeitosa de figuras reconhecíveis—uma discussão em curso dentro da comunidade de IA. Conclusão Como uma entidade pioneira no domínio da IA conversacional, a Grok AI encapsula o potencial para experiências transformadoras do utilizador na era digital. Desenvolvida pela xAI e impulsionada pela abordagem visionária de Elon Musk, a Grok AI integra conhecimento em tempo real com capacidades avançadas de interação. Esforça-se por ultrapassar os limites do que a inteligência artificial pode alcançar, mantendo um foco nas considerações éticas e na segurança do utilizador. A Grok AI não apenas incorpora o avanço tecnológico, mas também representa um novo paradigma de conversas no panorama Web3, prometendo envolver os utilizadores com conhecimento hábil e interação lúdica. À medida que o projeto continua a evoluir, ele permanece como um testemunho do que a interseção da tecnologia, criatividade e interação humana pode alcançar.

104 Visualizações TotaisPublicado em {updateTime}Atualizado em 2024.12.26

O que é ERC AI

Euruka Tech: Uma Visão Geral do $erc ai e as suas Ambições no Web3 Introdução No panorama em rápida evolução da tecnologia blockchain e das aplicações descentralizadas, novos projetos surgem frequentemente, cada um com objetivos e metodologias únicas. Um desses projetos é a Euruka Tech, que opera no vasto domínio das criptomoedas e do Web3. O foco principal da Euruka Tech, particularmente do seu token $erc ai, é apresentar soluções inovadoras concebidas para aproveitar as capacidades crescentes da tecnologia descentralizada. Este artigo tem como objetivo fornecer uma visão abrangente da Euruka Tech, uma exploração das suas metas, funcionalidade, a identidade do seu criador, potenciais investidores e a sua importância no contexto mais amplo do Web3. O que é a Euruka Tech, $erc ai? A Euruka Tech é caracterizada como um projeto que aproveita as ferramentas e funcionalidades oferecidas pelo ambiente Web3, focando na integração da inteligência artificial nas suas operações. Embora os detalhes específicos sobre a estrutura do projeto sejam um tanto elusivos, ele é concebido para melhorar o envolvimento dos utilizadores e automatizar processos no espaço cripto. O projeto visa criar um ecossistema descentralizado que não só facilita transações, mas também incorpora funcionalidades preditivas através da inteligência artificial, daí a designação do seu token, $erc ai. O objetivo é fornecer uma plataforma intuitiva que facilite interações mais inteligentes e um processamento eficiente de transações dentro da crescente esfera do Web3. Quem é o Criador da Euruka Tech, $erc ai? Neste momento, a informação sobre o criador ou a equipa fundadora da Euruka Tech permanece não especificada e algo opaca. Esta ausência de dados levanta preocupações, uma vez que o conhecimento sobre o histórico da equipa é frequentemente essencial para estabelecer credibilidade no setor blockchain. Portanto, categorizamos esta informação como desconhecida até que detalhes concretos sejam disponibilizados no domínio público. Quem são os Investidores da Euruka Tech, $erc ai? De forma semelhante, a identificação de investidores ou organizações de apoio para o projeto Euruka Tech não é prontamente fornecida através da pesquisa disponível. Um aspeto que é crucial para potenciais partes interessadas ou utilizadores que consideram envolver-se com a Euruka Tech é a garantia que vem de parcerias financeiras estabelecidas ou apoio de empresas de investimento respeitáveis. Sem divulgações sobre afiliações de investimento, é difícil tirar conclusões abrangentes sobre a segurança financeira ou a longevidade do projeto. Em linha com a informação encontrada, esta seção também se encontra no estado de desconhecido. Como funciona a Euruka Tech, $erc ai? Apesar da falta de especificações técnicas detalhadas para a Euruka Tech, é essencial considerar as suas ambições inovadoras. O projeto procura aproveitar o poder computacional da inteligência artificial para automatizar e melhorar a experiência do utilizador no ambiente das criptomoedas. Ao integrar IA com tecnologia blockchain, a Euruka Tech visa fornecer funcionalidades como negociações automatizadas, avaliações de risco e interfaces de utilizador personalizadas. A essência inovadora da Euruka Tech reside no seu objetivo de criar uma conexão fluida entre os utilizadores e as vastas possibilidades apresentadas pelas redes descentralizadas. Através da utilização de algoritmos de aprendizagem automática e IA, visa minimizar os desafios enfrentados por utilizadores de primeira viagem e agilizar as experiências transacionais dentro do quadro do Web3. Esta simbiose entre IA e blockchain sublinha a importância do token $erc ai, que se apresenta como uma ponte entre interfaces de utilizador tradicionais e as capacidades avançadas das tecnologias descentralizadas. Cronologia da Euruka Tech, $erc ai Infelizmente, devido à informação limitada disponível sobre a Euruka Tech, não conseguimos apresentar uma cronologia detalhada dos principais desenvolvimentos ou marcos na jornada do projeto. Esta cronologia, tipicamente inestimável para traçar a evolução de um projeto e compreender a sua trajetória de crescimento, não está atualmente disponível. À medida que informações sobre eventos notáveis, parcerias ou adições funcionais se tornem evidentes, atualizações certamente aumentarão a visibilidade da Euruka Tech na esfera cripto. Esclarecimento sobre Outros Projetos “Eureka” É importante abordar que múltiplos projetos e empresas partilham uma nomenclatura semelhante com “Eureka.” A pesquisa identificou iniciativas como um agente de IA da NVIDIA Research, que se concentra em ensinar robôs a realizar tarefas complexas utilizando métodos generativos, bem como a Eureka Labs e a Eureka AI, que melhoram a experiência do utilizador na educação e na análise de serviços ao cliente, respetivamente. No entanto, estes projetos são distintos da Euruka Tech e não devem ser confundidos com os seus objetivos ou funcionalidades. Conclusão A Euruka Tech, juntamente com o seu token $erc ai, representa um jogador promissor, mas atualmente obscuro, dentro do panorama do Web3. Embora os detalhes sobre o seu criador e investidores permaneçam não divulgados, a ambição central de combinar inteligência artificial com tecnologia blockchain destaca-se como um ponto focal de interesse. As abordagens únicas do projeto em promover o envolvimento do utilizador através da automação avançada podem diferenciá-lo à medida que o ecossistema Web3 avança. À medida que o mercado cripto continua a evoluir, as partes interessadas devem manter um olhar atento sobre os avanços em torno da Euruka Tech, uma vez que o desenvolvimento de inovações documentadas, parcerias ou um roteiro definido pode apresentar oportunidades significativas no futuro próximo. Neste momento, aguardamos por insights mais substanciais que possam desvendar o potencial da Euruka Tech e a sua posição no competitivo panorama cripto.

98 Visualizações TotaisPublicado em {updateTime}Atualizado em 2025.01.02

O que é DUOLINGO AI

DUOLINGO AI: Integrar a Aprendizagem de Línguas com Inovação Web3 e IA Numa era em que a tecnologia transforma a educação, a integração da inteligência artificial (IA) e das redes blockchain anuncia uma nova fronteira para a aprendizagem de línguas. Apresentamos DUOLINGO AI e a sua criptomoeda associada, $DUOLINGO AI. Este projeto aspira a unir o poder educativo das principais plataformas de aprendizagem de línguas com os benefícios da tecnologia descentralizada Web3. Este artigo explora os principais aspectos do DUOLINGO AI, analisando os seus objetivos, estrutura tecnológica, desenvolvimento histórico e potencial futuro, mantendo a clareza entre o recurso educativo original e esta iniciativa independente de criptomoeda. Visão Geral do DUOLINGO AI No seu cerne, DUOLINGO AI procura estabelecer um ambiente descentralizado onde os alunos podem ganhar recompensas criptográficas por alcançar marcos educativos em proficiência linguística. Ao aplicar contratos inteligentes, o projeto visa automatizar processos de verificação de habilidades e alocação de tokens, aderindo aos princípios do Web3 que enfatizam a transparência e a propriedade do utilizador. O modelo diverge das abordagens tradicionais de aquisição de línguas ao apoiar-se fortemente numa estrutura de governança orientada pela comunidade, permitindo que os detentores de tokens sugiram melhorias ao conteúdo dos cursos e à distribuição de recompensas. Alguns dos objetivos notáveis do DUOLINGO AI incluem: Aprendizagem Gamificada: O projeto integra conquistas em blockchain e tokens não fungíveis (NFTs) para representar níveis de proficiência linguística, promovendo a motivação através de recompensas digitais envolventes. Criação de Conteúdo Descentralizada: Abre caminhos para educadores e entusiastas de línguas contribuírem com os seus cursos, facilitando um modelo de partilha de receitas que beneficia todos os colaboradores. Personalização Através de IA: Ao empregar modelos avançados de aprendizagem de máquina, o DUOLINGO AI personaliza as lições para se adaptar ao progresso de aprendizagem individual, semelhante às características adaptativas encontradas em plataformas estabelecidas. Criadores do Projeto e Governança A partir de abril de 2025, a equipa por trás do $DUOLINGO AI permanece pseudónima, uma prática frequente no panorama descentralizado das criptomoedas. Esta anonimidade visa promover o crescimento coletivo e o envolvimento das partes interessadas, em vez de se concentrar em desenvolvedores individuais. O contrato inteligente implementado na blockchain Solana indica o endereço da carteira do desenvolvedor, o que significa o compromisso com a transparência em relação às transações, apesar da identidade dos criadores ser desconhecida. De acordo com o seu roteiro, o DUOLINGO AI pretende evoluir para uma Organização Autónoma Descentralizada (DAO). Esta estrutura de governança permite que os detentores de tokens votem em questões críticas, como implementações de funcionalidades e alocação de tesouraria. Este modelo alinha-se com a ética de empoderamento comunitário encontrada em várias aplicações descentralizadas, enfatizando a importância da tomada de decisão coletiva. Investidores e Parcerias Estratégicas Atualmente, não existem investidores institucionais ou capitalistas de risco publicamente identificáveis ligados ao $DUOLINGO AI. Em vez disso, a liquidez do projeto origina-se principalmente de trocas descentralizadas (DEXs), marcando um contraste acentuado com as estratégias de financiamento das empresas tradicionais de tecnologia educacional. Este modelo de base indica uma abordagem orientada pela comunidade, refletindo o compromisso do projeto com a descentralização. No seu whitepaper, o DUOLINGO AI menciona a formação de colaborações com “plataformas de educação blockchain” não especificadas, com o objetivo de enriquecer a sua oferta de cursos. Embora parcerias específicas ainda não tenham sido divulgadas, estes esforços colaborativos sugerem uma estratégia para misturar inovação em blockchain com iniciativas educativas, expandindo o acesso e o envolvimento dos utilizadores em diversas vias de aprendizagem. Arquitetura Tecnológica Integração de IA O DUOLINGO AI incorpora dois componentes principais impulsionados por IA para melhorar as suas ofertas educativas: Motor de Aprendizagem Adaptativa: Este motor sofisticado aprende a partir das interações dos utilizadores, semelhante a modelos proprietários de grandes plataformas educativas. Ele ajusta dinamicamente a dificuldade das lições para abordar desafios específicos dos alunos, reforçando áreas fracas através de exercícios direcionados. Agentes Conversacionais: Ao empregar chatbots alimentados por GPT-4, o DUOLINGO AI oferece uma plataforma para os utilizadores se envolverem em conversas simuladas, promovendo uma experiência de aprendizagem de línguas mais interativa e prática. Infraestrutura Blockchain Construído na blockchain Solana, o $DUOLINGO AI utiliza uma estrutura tecnológica abrangente que inclui: Contratos Inteligentes de Verificação de Habilidades: Esta funcionalidade atribui automaticamente tokens aos utilizadores que passam com sucesso em testes de proficiência, reforçando a estrutura de incentivos para resultados de aprendizagem genuínos. Emblemas NFT: Estes tokens digitais significam vários marcos que os alunos alcançam, como completar uma seção do seu curso ou dominar habilidades específicas, permitindo-lhes negociar ou exibir as suas conquistas digitalmente. Governança DAO: Membros da comunidade com tokens podem participar na governança votando em propostas-chave, facilitando uma cultura participativa que incentiva a inovação nas ofertas de cursos e funcionalidades da plataforma. Cronologia Histórica 2022–2023: Conceituação O trabalho preliminar para o DUOLINGO AI começa com a criação de um whitepaper, destacando a sinergia entre os avanços em IA na aprendizagem de línguas e o potencial descentralizado da tecnologia blockchain. 2024: Lançamento Beta Um lançamento beta limitado introduz ofertas em línguas populares, recompensando os primeiros utilizadores com incentivos em tokens como parte da estratégia de envolvimento comunitário do projeto. 2025: Transição para DAO Em abril, ocorre um lançamento completo da mainnet com a circulação de tokens, promovendo discussões comunitárias sobre possíveis expansões para línguas asiáticas e outros desenvolvimentos de cursos. Desafios e Direções Futuras Obstáculos Técnicos Apesar dos seus objetivos ambiciosos, o DUOLINGO AI enfrenta desafios significativos. A escalabilidade continua a ser uma preocupação constante, particularmente no equilíbrio dos custos associados ao processamento de IA e à manutenção de uma rede descentralizada responsiva. Além disso, garantir a criação e moderação de conteúdo de qualidade num ambiente descentralizado apresenta complexidades na manutenção dos padrões educativos. Oportunidades Estratégicas Olhando para o futuro, o DUOLINGO AI tem o potencial de aproveitar parcerias de micro-certificação com instituições académicas, proporcionando validações verificadas em blockchain das habilidades linguísticas. Além disso, a expansão cross-chain poderia permitir que o projeto acedesse a bases de utilizadores mais amplas e a ecossistemas de blockchain adicionais, melhorando a sua interoperabilidade e alcance. Conclusão DUOLINGO AI representa uma fusão inovadora de inteligência artificial e tecnologia blockchain, apresentando uma alternativa focada na comunidade aos sistemas tradicionais de aprendizagem de línguas. Embora o seu desenvolvimento pseudónimo e o modelo económico emergente tragam certos riscos, o compromisso do projeto com a aprendizagem gamificada, educação personalizada e governança descentralizada ilumina um caminho a seguir para a tecnologia educativa no domínio do Web3. À medida que a IA continua a avançar e o ecossistema blockchain evolui, iniciativas como o DUOLINGO AI poderão redefinir a forma como os utilizadores interagem com a educação linguística, empoderando comunidades e recompensando o envolvimento através de mecanismos de aprendizagem inovadores.

114 Visualizações TotaisPublicado em {updateTime}Atualizado em 2025.04.11

Discussões

Bem-vindo à Comunidade HTX. Aqui, pode manter-se informado sobre os mais recentes desenvolvimentos da plataforma e obter acesso a análises profissionais de mercado. As opiniões dos utilizadores sobre o preço de AI (AI) são apresentadas abaixo.

活动图片